



OCTOBER 4-7, 2009
THE GRAND PEQUOT AT FOXWOODS RESORT
MASHANTUCKET, CT

#### Welcome to the 2009 American Conference on Pharmacometrics!

ACoP is a U.S. national meeting focusing on all aspects of modeling and simulation in pharmacology and therapeutics. The first ACoP meeting in Tucson last year proved to be the premiere U.S. event for excellence and knowledge sharing in pharmacometrics, with international participation from academia, industry, and government sectors.

While our first ACoP was a resounding success, we are excited by the tremendous growth we've experienced for the 2009 meeting:

|                    | 2008 | 2009 |
|--------------------|------|------|
| Participants       | 320  | 426  |
| Organizations      | 108  | 125  |
| Posters            | 100  | 164  |
| Exhibitors         | 6    | 12   |
| Students/Post-docs | 29   | 70   |

We are especially pleased that, thanks to the generosity of our sponsors, we have been able to make the registration cost lower for students, allowing us to more than double their numbers from last year! In addition, we'll have some special student programming this year for the first time, which we hope to make a regular part of future ACoP meetings.

We look forward to sharing an exciting, educational, and entertaining 3 days with you!

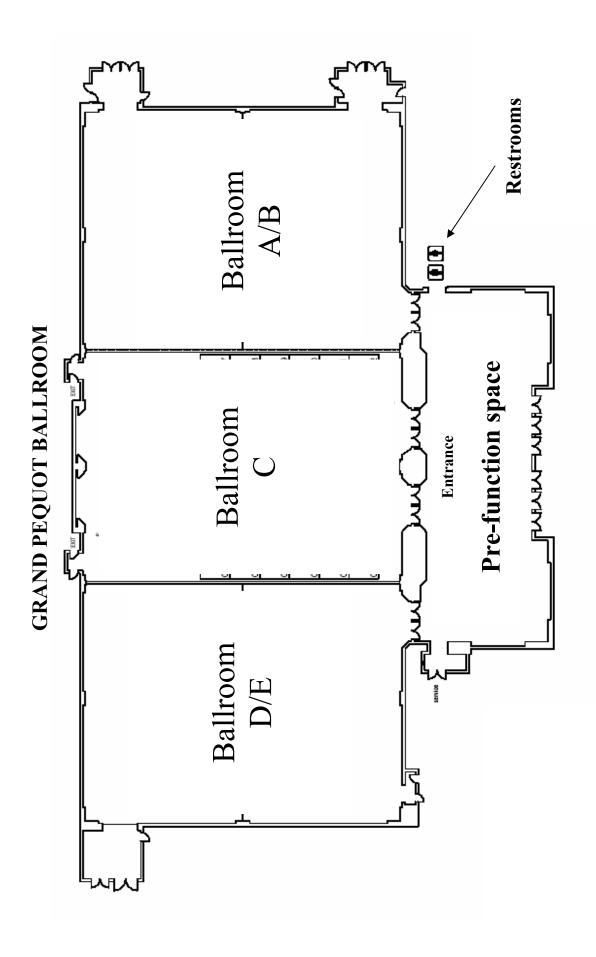
# The ACoP 2009 Organizing Committee:

Kyle Baron
Dick Brundage
David D'Argenio
Marc Gastonguay
Raymond Miller
Marc Pfister
Stacey Tannenbaum

# Special Thanks to BMSR for their support of ACoP 2009!!



# To ACoP Participants,


The Biomedical Simulations Resource in the Department of Biomedical Engineering at the University of Southern California is delighted to serve as a sponsor for ACoP 2009.

Since 1987, the BMSR has sponsored 12 workshops on Advanced Methods of PK/PD Systems Analysis as part of the service, dissemination and training activities of its NIH/NIBIB center grant. These meetings, held in Marina del Rey, California, brought together pharmaceutical scientists, clinical pharmacologists, clinical pharmacists, mathematicians, statisticians, engineers, chemists, physicists, biological scientists and others in a forum designed to facilitate the exchange of ideas between basic and clinical research scientists, experimentalists and modelers, for the purpose of advancing the study of pharmacokinetics and drug response.

The BMSR's continuing mission to promote the development and application of systems modeling in biomedicine is also shared by ACoP, and we look forward to working with its members to insure the success of this essential mission.

Best wishes for a stimulating meeting from the BMSR,

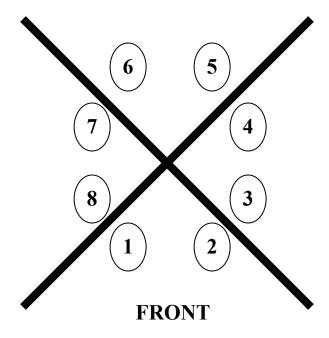
David Z. D'Argenio, PI Vasilis Z. Marmarelis, Co-PI Michael C.K. Khoo, Project Leader Theodore W. Berger, Project Leader Marcos Briano, Administrator



Main Conference: Ballrooms D/E (left)
Posters and Exhibitors: Ballroom C (middle)

Meals and Breaks: Ballroom A/B (right) Registration: Pre-function Space

|           |          | SUNDAY OCT 4                                                                            |                                                                        |
|-----------|----------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| 40.00 514 | 5 00 DM  |                                                                                         |                                                                        |
| 12:00 PM  | 5:00 PM  | Registration                                                                            |                                                                        |
| 5:00 PM   | 9:00 PM  | ACoP Opening Reception                                                                  |                                                                        |
|           |          | MONDAY OCT 5                                                                            |                                                                        |
| 7:30 AM   | 8:30 AM  | Breakfast/Registration                                                                  |                                                                        |
| 7.30 AW   | 0.50 AW  | BreaklastiNegistiation                                                                  |                                                                        |
| 8:30 AM   | 8:45 AM  | Opening remarks                                                                         | Stacey Tannenbaum                                                      |
| 8:45 AM   | 10:15 AM | Applications of Modeling over the Development Life Cycle of Biologics                   |                                                                        |
|           |          | Session Chairs: David D'Argenio and Don Mager                                           |                                                                        |
|           | •        | Predicting human PK/PD of biologics from animal data                                    | Peiming Ma                                                             |
|           |          | Modeling and simulations for assessment of PK and PD of a G-CSF biosimilar              | Wojciech Krzyzanski                                                    |
|           |          | Population PK-PD Modeling of Biological Agents: When Modeling Meets Reality             | Diane Mould                                                            |
| 10:15 AM  | 11:00 AM | Break/Poster set up/Software Demos                                                      |                                                                        |
| 11:00 AM  | 12:30 PM | Model and Data Sharing Initiatives                                                      |                                                                        |
|           |          | Session Chairs: Klaus Romero and Brian Corrigan                                         |                                                                        |
|           |          | TIPharma mechnism-based PKPD modeling platform                                          | Meindert Danhof                                                        |
|           |          | The Coalition Against Major Diseases: Review of goals, accomplishments and future plans | Klaus Romero                                                           |
|           |          | OpenDiseaseModels.org: An Open Forum for Collaborative Model Building and Evaluation    | Bill Gillespie                                                         |
|           |          | FDA Disease Models                                                                      | Christoffer Tornøe                                                     |
| 12:30 PM  | 2:00 PM  | Lunch                                                                                   |                                                                        |
| 2:00 PM   | 3:30 PM  | Dealing with Missing Data in Pharmacometrics                                            |                                                                        |
|           |          | Session Chairs: Marc Gastonguay and Jonathan French                                     |                                                                        |
|           |          | Introduction to Missing data and issues in pharmacometrics                              | Jonathan French                                                        |
|           |          | When Should We Be Concerned About Nonignorably Missing Data?                            | Dan Heitjan                                                            |
|           |          | The Impact of Missing Data on Model Evaluation                                          | Marc Gastonguay                                                        |
| 3:30 PM   | 5:00 PM  | Break/Posters/Software Demos                                                            |                                                                        |
| 5:00 PM   | 6:00 PM  | Lewis B. Sheiner Memorial Lecture: Connecting to the Other Side                         | Mats Karlsson                                                          |
| 6:00 PM   | 7:00 PM  | Where will the pharmacometricians of the future come from?                              | 1                                                                      |
|           |          | Session Chairs: Bernd Meibohm and Hartmut Derendorf                                     |                                                                        |
|           |          | Panel discussion                                                                        | Sandra Allerheiligen,<br>David Cadieu, Amita<br>Joshi, Richard Lalonde |
| 7:00 PM   | 11:00 PM | ACoP Social Event                                                                       |                                                                        |


|          |          | TUESDAY OCT 6                                                                                                                        |                       |
|----------|----------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 8:00 AM  | 9:00 AM  | Breakfast                                                                                                                            |                       |
| 9:00 AM  | 10:30 AM | Development and utilization of disease models                                                                                        |                       |
|          |          | Session Chairs: Mats Karlsson and Marc Pfister                                                                                       |                       |
|          | _        | A Mechanism-Based Disease Model for SGLT2 Inhibitors in Type 2 Diabetes (T2DM) Subjects                                              | Chee Ng               |
|          |          | Empirical Disease Progression Model for Ranibizumab in Age-Related Macular Degeneration                                              | Satyendra Suryawanshi |
|          |          | The Antiviral Information Management System (AIMS): Leveraging prior knowledge to inform dose selection of new hepatitis C therapies | Lauren Neal           |
|          |          | A Modeling Framework to Simulate Motesanib Efficacy in Thyroid Cancer                                                                | René Bruno            |
| 10:30 AM | 11:00 AM | Break                                                                                                                                |                       |
|          | ſ        | New Directions in Cardiovascular Modeling: From Biomarkers to Clinic                                                                 | cal Outcomes and      |
| 11:00 AM | 12:30 PM | Comparative Effectiveness                                                                                                            | cai Outcomes and      |
|          |          | Session Chairs: Christine Garnett and Richard Lalonde                                                                                |                       |
|          | -        | The RAAS Hypertension PhysioLab platform: A Systems Modeling Approach to Hypertension                                                | Ramprasad Ramakrishna |
|          |          | Conceptual Framework for Evaluating The CV Risk Manifested By Drug-<br>Induced Elevations in Systolic Blood Pressure                 | Raj Madabushi         |
|          |          | Quantitative Approaches for Comparative Effectiveness and<br>Pharmacoeconomics                                                       | Jens Grueger          |
| 12:30 PM | 2:00 PM  | Student Session: Troubleshoot your project with M&S experts                                                                          |                       |
|          |          | Diane Mould, David D'Argenio, Leonid Gibiansky, William Gillespie, Lu                                                                | ann Phillips          |
| 12:30 PM | 7:00 PM  | Afternoon off (on your own)                                                                                                          |                       |
| 7:00 PM  | 8:30 PM  | KEYNOTE PRESENTATION: Beautiful Evidence                                                                                             | Edward Tufte          |
| 8:30PM   | 10:00 PM | Buffet dinner, posters, and exhibitors                                                                                               |                       |

|            |          | WEDNESDAY OCT 7                                                                                                                                                 |                       |
|------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 7:00 AM    | 8:00 AM  | Breakfast                                                                                                                                                       |                       |
| 0.00 414   | 0.20 444 | Communication Through Crambias Lasting at Data Models and Day                                                                                                   | .lta                  |
| 8:00 AM    | 9:30 AM  | Communication Through Graphics: Looking at Data, Models, and Resu<br>Session Chair: Andreas Krause                                                              | iits                  |
|            |          | Exploratory Data Visualisation: Taming the Technology                                                                                                           | Richard Pugh          |
|            |          | Visualizing PK/PD Models using Berkeley Madonna                                                                                                                 | Andreas Krause        |
|            |          | Simulation Graphics to Enable Model-Based Decision Making                                                                                                       | Kevin Dykstra         |
| 9:30 AM    | 11:00 AM | Break/Posters/Software Demos                                                                                                                                    |                       |
| 11:00 AM   | 1:00 PM  | Event Driven/Non-continuous Data Models                                                                                                                         | 1                     |
| TT.00 AIVI | 1.00 F W |                                                                                                                                                                 |                       |
|            |          | Session Chairs: Raymond Miller and Celine Dartois  Exposure-Response Analysis for Spontaneously Reported Dizziness in                                           |                       |
|            |          | Pregabalin Treated Patients with Generalized Anxiety Disorder                                                                                                   | Kaori Ito             |
|            |          | Impact of Dosing Regimens on Dropout Across Pregabalin Trials in the<br>Treatment of Generalized Anxiety Disorder                                               | Bojan Lalovic         |
|            |          | Apnea of prematurity: A mixed effects modeling approach to disease resolution and pharmacologic intervention modeling                                           | Christopher J Godfrey |
|            |          | Estimation of Mixed Hidden Markov Models with SAEM. Application to daily seizures data                                                                          | Marc Lavielle         |
| 1:00 PM    | 2:00 PM  | Lunch                                                                                                                                                           |                       |
|            | ı        | Who Wants to Be the First to Dose this Drug in Children?                                                                                                        |                       |
| 2:00 PM    | 3:30 PM  | Approaches to Use Knowledge to Inform Dosing Choices                                                                                                            |                       |
|            |          | Session Chair: Steven Kern                                                                                                                                      |                       |
|            | •        | The Design and Analysis of Informative Pediatric Clinical Pharmacology<br>Trials Based on Integrating Modeling and Simulation With Available Prior<br>Knowledge | Jeff Barrett          |
|            |          | No Experience, No Problem: Using Bottom-up Approaches to Guide First-in-Children Dosing                                                                         | Andrea Edginton       |
|            |          | Evaluation of Performance of a Pediatric Pharmacokinetic Study Using a Simulation Based Design                                                                  | Manisha Lamba         |
| 3:30 PM    | 4:30 PM  | Break/Posters/Software Demos                                                                                                                                    |                       |
| 4:30 PM    | 5:45 PM  | PhRMA working group updates                                                                                                                                     |                       |
|            |          | Session Chairs: Julie Stone and Amit Roy                                                                                                                        |                       |
|            | •        | Adaptive Dose-Ranging Studies: An Update from the PhRMA Working Group                                                                                           | Jose Pinheiro         |
|            |          | Optimizing TQT Studies through PK-PD: An OQT Working Group                                                                                                      | Larisa Reyderman      |
|            |          | Model-Based Drug Development PhRMA Initiative: Mapping the current status and future state for modeling and simulation in the pharmaceutical industry           | Julie Stone           |
| 5:45 PM    | 6:00 PM  | Closing remarks                                                                                                                                                 | ACoP committee        |
|            |          |                                                                                                                                                                 |                       |

# **ACoP** posters

Posterboards will be set up in clusters of 4 double-sided poster boards in an "X" formation. Each X is designated with a letter (A,B,C) as in the map on the next page.

Posters are located by the letter of the X cluster as well as the number (1-8), designating the location on the cluster, in the formation shown below.



There are also 4 posters against the side and back walls designated Wall 1 – Wall 4.



Posters are listed by day of presentation, then sorted by main topic

| MONDAY AFTERNOON         | NOON                                                                                                                                                                                  |                                             |          |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------|
| Name                     | Abstract Title                                                                                                                                                                        | Topic                                       | Location |
| Kenneth T. Luu           | A Pharmacokinetic and Tumor-Immune Interaction Model for Immunomodulating Antibodies                                                                                                  | Biologics                                   | D1       |
| Ramprasad<br>Ramakrishna | Meta-analysis of Summary-level Literature Data Integrated with Sponsor Data to Support Model Based Drug Development.                                                                  | Clinical Outcome<br>Modeling                | C2       |
| Pascal Chanu             | Decisive support of Modeling & Simulation for getting drug approval in the context of safety concern on the drug class                                                                | Clinical Outcome<br>Modeling                | E7       |
| James Dunyak             | Modeling Enterohepatic Recirculation and Intestinal Lumen Exposure for a Compound with Substantial Accumulation                                                                       | Clinical PK                                 | 67       |
| Wei Liu                  | Time-Dependent, Dual First and Zero-Order Absorption Model for Characterizing the Delayed Absorption Profile in Subjects with Acute Pain                                              | Clinical PK                                 | P7       |
| France Varin             | Clinical Pharmacokinetics of Ropivacaine after Femoral Nerve Block in Patients<br>Undergoing Total Knee Arthroplasty: Preliminary results.                                            | Clinical PK                                 | Q7       |
| Srividya<br>Neelakantan  | Population Pharmacokinetic Analysis of Dalbavancin in Patients with Skin and Skin<br>Structure Infections                                                                             | Clinical PK                                 | R1       |
| Lauren Neal              | Theoretical and experimental comparison of hepatitis C viral dynamics models and parameter estimates                                                                                  | Disease Modeling                            | H7       |
| Sima Ahadieh             | Model-Based Meta-Analysis of Young Maniac Rating Scale in Bipolar Patients                                                                                                            | Disease Modeling                            | 77       |
| Elodie Plan              | Repeated Time-to-Categorical Events analysis                                                                                                                                          | Event Driven Non-<br>continuous Data Models | 11       |
| Fatemeh Akhlaghi         | Blood and Plasma Pharmacokinetics of Bortezomib in Relation to Blood 20S Proteasome Activity after Single and Multiple Dosing in Cynomongolus Monkeys.                                | Exposure-Response                           | A1       |
| Amit Khatri              | Evaluation of Drug Administration Sequence Effects on Tumor Cell Kill Using WBDiff in WinBUGS                                                                                         | Exposure-Response                           | J7       |
| Susan Zhou               | Feasibility of Characterizing Time and Concentration Dependent Binary Response Data by Time-To-Event Analysis                                                                         | Exposure-Response                           | N7       |
| Nitin Kaila              | A Methodological Approach For Projecting Blood-Pressure Dose Response For A<br>Backup Compound Using Clinical And Biomarker Data From A Previously Studied<br>Agent In The Same Class | Exposure-Response                           | P1       |

| MONDAY AFTERNOON        | NOON                                                                                                                                                             |                                              |          |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------|
| Name                    | Abstract Title                                                                                                                                                   | Topic                                        | Location |
| lhab G. Girgis          | Pharmacokinetic-Pharmacodynamic Assessment of Topiramate Adjunctive Therapy in Epilepsy                                                                          | Exposure-Response                            | T1       |
| Pratap Singh            | Mixed Effects Model Analysis of the QTc Interval-concentration Relationship of SC-080 in Healthy Subjects                                                        | Exposure-Response                            | 70       |
| Xiaoning Wang           | Dasatinib Exposure-Efficacy/Safety Analyses to Support Dose Regimen Recommendation for Patients with Chronic Myeloid Leukemia                                    | Exposure-Response                            | Wall1    |
| Fatemeh Akhlaghi        | Development of an Integrated Pharmacokinetic and Pharmacodynamic Model for Bortezomib to Allow Predication of 20S Proteasome Activity from Plasma Concentrations | Mechanistic Modeling/<br>Systems Biology     | A2       |
| Sunny Chapel            | Semi-mechanistic Model for Characterizing the Effect of Rifampin Co-administration on the Pharmacokinetics of Efavirenz                                          | Mechanistic Modeling/<br>Systems Biology     | B7       |
| Jürgen Bulitta          | Mechanism-based Modeling of Beta-lactam Antibiotics Binding to Specific Penicillin-Binding Proteins of Pseudomonas aeruginosa at Several Initial Inocula         | Mechanistic Modeling/<br>Systems Biology     | K1       |
| Jun Li                  | A new estimation approach for in vivo antimicrobial drug efficacy accounting for variability in pharmacokinetics                                                 | Mechanistic Modeling/<br>Systems Biology     | U1       |
| Yasong Lu               | Modeling-Aided Human-to-Animal Translation of the Anticonvulsant Retigabine, a Kv7.2-5 Channel Opener                                                            | Mechanistic Modeling/<br>Systems Biology     | Wall4    |
| Rocio Lledo-Garcia      | A New Whole Body Clinical Physiologically-Based Pharmacokinetic Model (WB-PBPK) for Estimation of PK Parameters with Informative Prior Distribution in Nonmem    | PBPK modeling                                | R7       |
| Michael Tagen           | Population Pharmacokinetic and Pharmacogenetic Analysis of Gefitinib in Pediatric Cancer Patients                                                                | Pediatrics                                   | D7       |
| Hyewon Kim              | Population Pharmacokinetics of Unbound Mycophenolic Acid in Patients Undergoing Allogeneic Hematopoietic Cell Transplantation (HCT)                              | Pediatrics                                   | F1       |
| Fang Li                 | Pharmacometrics-Based Dose Selection of Levofloxacin as a Treatment for Post-Exposure Inhalational Anthrax in Children                                           | Pediatrics                                   | L7       |
| Christoffer W<br>Tornoe | Impact of Pharmacometric Reviews on New Drug Approval and Labeling Decisions—a Survey of 65 NDAs Between 2006 and 2008                                           | Pharmacometrics review,<br>Regulatory impact | S1       |
| Andrea Edginton         | Physiologically-based Modeling for Predicting Pharmacokinetic Changes under Physiological Stressors                                                              | Special populations                          | G1       |

| MONDAY AFTERNOON         | NOON                                                                                                                                                                   |                      |          |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------|
| Name                     | Abstract Title                                                                                                                                                         | Topic                | Location |
| Sihem Ait-Oudhia         | Comparison of Pharmacokinetics of Epoetin Alfa Following Multiple Subcutaneous Administrations in Healthy Volunteers and Anemic Cancer Patients                        | Special populations  | S7       |
| Joo-Yeon Lee             | Evaluation of Bayesian adaptive designs for dose-finding studies via computer simulations                                                                              | Study Design/Conduct | ٧1       |
| Tim Bergsma              | Development and Pilot Evaluation of a High-Performance Computing System for Web-Based Deployment of Pharmacometrics Applications in a Multi-User Training Environment. | Tools and Techniques | B1       |
| Ramprasad<br>Ramakrishma | Evolving an Infrastructure to build and maintain indication- specific summary-level literature databases to support model based drug development                       | Tools and Techniques | C1       |
| Huafeng Zhou             | A Bayesian Approach to Handle Pharmacodynamics (PD) Data Below Limit of Quantification (BLOQ) in PK/PD Modeling                                                        | Tools and Techniques | E1       |
| Martin Bergstrand        | Prediction Corrected Visual Predictive Checks                                                                                                                          | Tools and Techniques | F7       |
| David A James            | ABPM: A statistical package for the visualization, analysis and modeling of ambulatory blood pressure data                                                             | Tools and Techniques | H1       |
| Michael Heathman         | Interactive Simulation and Visualization of Drug/Disease Models                                                                                                        | Tools and Techniques | K7       |
| Chee M Ng                | Simulated Annealing Monte-Carlo Parametric Expectation Maximization Estimation Method for Population Pharmacokinetic/Pharmacodynamic Data Analysis                     | Tools and Techniques | L1       |
| Stefan Willmann          | Mechanism-based Prediction of Particle-Size Dependent Dissolution and Absorption Kinetics with PK-Sim®                                                                 | Tools and Techniques | M1       |
| France Mentré            | Evaluation of different tests based on observations for external model evaluation of population analyses                                                               | Tools and Techniques | M7       |
| Stacey<br>Tannenbaum     | Sharing Experiences of a Dedicated SAS Programming Group in a M&S Department                                                                                           | Tools and Techniques | N<br>1   |
| Anita Grover             | Determination of the Operational Multiple Dosing Half Life                                                                                                             | Tools and Techniques | Q1       |
| Paul Baverel             | Informativeness of Internal and External Validation Techniques in Various Simulation Settings and Across Algorithms                                                    | Tools and Techniques | 77       |
|                          |                                                                                                                                                                        |                      |          |

| Name                            | Abstract Title                                                                                                                                                                                                                                      | Topic                                          | Location |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------|
| Varun Goel                      | Application of Active-Comparator Based Benefit-Risk Assessment in Evaluating Clinical Trial Design Features of a New Chemical Entity in a Bayesian Decision Theoretic Framework                                                                     | Benefit/Risk<br>Assessment                     | B2       |
| Immanuel<br>Freedman            | Feasibility of Immunogenicity Assessment Based on Models of Polyclonal Anti-Drug Antibody Immunodynamics                                                                                                                                            | Biologics                                      | P4       |
| Hanbin Li                       | Pharmacokinetics Nomograms For The Onset And Offset Of Postoperative Dental Pain<br>Relief with Ibuprofen                                                                                                                                           | Clinical Outcome<br>Modeling                   | B4       |
| Sameer Doshi                    | Clinical Trial Simulations to Evaluate Non-Inferiority of Hemoglobin Response Comparing Once Monthly to Every Two Week Dosing of Darbepoetin Alfa                                                                                                   | Clinical Outcome<br>Modeling                   | G2       |
| Timothy Nicholas                | Preliminary Population Pharmacokinetic Modeling of PF-04360365, a Humanized Anti-Amyloid Monoclonal Antibody, in Patients with Mild-to-Moderate Alzheimer's Disease                                                                                 | Clinical PK                                    | F4       |
| John Carl<br>Panetta            | A Mathematical Model of Intracellular Methotrexate Accumulation and the Inhibition of Folate Pathway Enzymes in Acute Lymphoblastic Leukemia                                                                                                        | Clinical PK                                    | M4       |
| Parviz<br>Ghahramani            | Population Pharmacokinetic Analysis of Milnacipran in Fibromyalgia Patients and Healthy<br>Volunteers                                                                                                                                               | Clinical PK                                    | ٧2       |
| Zhaoyu (Amy)<br>Meng            | Pharmacokinetic Modeling of Etomidate: A Randomized Comparison of Two Formulations                                                                                                                                                                  | Clinical PK                                    | Wall3    |
| Mahesh N.<br>Samtani            | Paliperidone Palmitate Dosing in Special Patient Populations Including the Elderly and those with Renal Impairment or Differing Body Mass Index: Guidance Based on Pharmacokinetic Modeling and Simulation                                          | Clinical PK, Special<br>Populations            | K4       |
| Song Mu                         | Modeling longitudinal tumor metrics in NHL patients treated with Rituximab: Application of the Norton-Simon Hypothesis incorporating Gompertzian growth                                                                                             | Disease Modeling                               | F2       |
| Julie Stone                     | Viral Dynamics Modeling of Viral Load and Resistance Data from Short-term Monotherapy with the HCV Protease Inhibitor, MK-7009                                                                                                                      | Disease Modeling                               | G4       |
| Nitin Kaila                     | A Pharmacodynamic Model for the Long Term Effects of Galvus, Metformin and a combination therapy of Galvus with Metformin on Fasting Plasma Glucose (FPG) and Glycosylated Hemoglobin A1c (HbA1c) in patients with Type II Diabetes Patients (T2DM) | Disease Modeling                               | P2       |
| Klas Johan<br>Fredrik Petersson | Comparisons of modeling dropout as Time-to-Event data or Binary data using logistic regression.                                                                                                                                                     | Event Driven Non-<br>continuous Data<br>Models | H4       |

| TUESDAY EVENING           | NING                                                                                                                                                                                                                                      |                                          |          |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------|
| Name                      | Abstract Title                                                                                                                                                                                                                            | Topic                                    | Location |
| Tae Eun Kim               | The evaluation of the impact of in vitro dose-response curve slope on the clinical antiviral activity prediction of an HIV drug using PK-PD-Disease model-based simulation                                                                | Exposure-Response                        | A4       |
| Rujia Xie                 | Population Pharmacokinetic/Pharmacodynamic (PK/PD) Analysis for the Effect of Tanezumab on Overall Daily Pain Score Data in Adults with Moderate-to-Severe Pain due to Osteoarthritis of the Knee                                         | Exposure-Response                        | D4       |
| Wonkyung Byon             | Exposure-Response Analyses of the Effects of Pregabalin Administration in Patients with Fibromyalgia using Daily pain Score and Patient Global Impression of Change                                                                       | Exposure-Response                        | J4       |
| Farkad Ezzet              | A Mixed-Effects Hazard Model to Compare the PK/PD of Armodafinil and Modafinil in Patients with Excessive Sleepiness Associated with Shift Work Disorder                                                                                  | Exposure-Response                        | Q4       |
| Jian-Feng Lu              | Population Pharmacokinetic (PK)/Pharmacodynamic (PD) Modeling and Simulations for Exposure—Tumor Response Relationships: Motesanib in a Phase 2 Thyroid Cancer Study                                                                      | Exposure-Response                        | S4       |
| Arne Ring                 | Delayed Effects in the Exposure-Response Analysis of Clinical QT-Studies                                                                                                                                                                  | Exposure-Response                        | T2       |
| Emma Hansson              | Correlations Between Fatigue, Hand-foot syndrome and the Angiogenic Factors VEGF, sVEGFR-2, sVEGFR-3 and sKIT in Patients Receiving Sunitinib                                                                                             | Exposure-Response                        | ٧4       |
| Ramprasad<br>Ramakrishna  | The RAAS PhysioLab model of hypertension: Development and parameterization of normotensive and hypertensive virtual patients (VPs), and generation of virtual populations (Vpops).                                                        | Mechanistic Modeling/<br>Systems Biology | C3       |
| Ramprasad<br>Ramakrishna  | The RAAS Hypertension PhysioLab platform: A computer modeling platform to support design and analysis of clinical studies of novel antihypertensive therapies in a variety of clinical hypertensive phenotypes: Concepts and methodology. | Mechanistic Modeling/<br>Systems Biology | C4       |
| Gabriel<br>Helmlinger     | Inference of imatinib (IM) effects on leukemic stem cell (SC) compartment via mathematical modeling of IRIS treatment response data                                                                                                       | Mechanistic Modeling/<br>Systems Biology | D2       |
| Jurgen Bulitta            | Population Pharmacodynamic Modeling of the Mechanism of Action and Emergence of Sub-populations of Pseudomonas aeruginosa for a Wide Range of Colistin Dosage Regimens                                                                    | Mechanistic Modeling/<br>Systems Biology | K2       |
| Matthew M.<br>Riggs       | A Systems Biology Model To Describe Long-Term Bone Remodeling Effects Of Estrogen In Menopausal And Postmenopausal Women.                                                                                                                 | Mechanistic Modeling/<br>Systems Biology | N2       |
| Cornelia<br>Landersdorfer | Pharmacodynamic Modeling of the Effects of Tetraiodothyroacetic Acid (Tetrac) on Human Cancer Cell Proliferation                                                                                                                          | Mechanistic Modeling/<br>Systems Biology | V4       |
| Frédérique<br>Fenneteau   | Physiologically based predictions of the impact of inhibition of intestinal and hepatic metabolism on human pharmacokinetics of CYP3A substrates                                                                                          | Mechanistic Modeling/<br>Systems Biology | R4       |

| TUESDAY EVENING            | NING                                                                                                                                                                                                               |                           |          |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------|
| Name                       | Abstract Title                                                                                                                                                                                                     | Topic                     | Location |
| Rui Zhu                    | Isoniazid Pharmacokinetics in HIV Perinatally Exposed Infants: The Role of NAT-2 Enzyme Maturation                                                                                                                 | Pediatrics                | E4       |
| Stefan Willmann            | A Generic Translational Approach to Pediatric Study Design Relying on Whole-Body<br>Physiologically-Based Pharmacokinetic Modeling                                                                                 | Pediatrics                | M2       |
| Robert Bies                | Public Health Model For The Evaluation Of The Management Of Hypertension – A Proposal                                                                                                                              | Public Health<br>Outcomes | E2       |
| Diane R Mould              | Population Pharmacokinetic Modeling and Simulation in Treatment of Seizures in Infants with Topiramate                                                                                                             | Special populations       | R2       |
| Scott Van Wart             | Impact of Dose Selection and Assay Sensitivity on Target Mediated Drug Disposition (TMDD) Population Pharmacokinetic Model Parameter Estimation: A Case Study Using Interferon-beta                                | Study Design/Conduct      | J2       |
| James A. Rogers            | Clinical Trial Simulation to Compare Adaptive and Fixed Designs for a Phase 3 Clinical Trial of Nacystelyn® (L-Lysine-N-acetyl-L-cysteinate) for Cystic Fibrosis                                                   | Study Design/Conduct      | L4       |
| Caroline Bazzoli           | Prediction of power of test of discrete covariates in population analyses and influence of design: application to gender effect in joint pharmacokinetic models of nucleoside analogs and their active metabolites | Study Design/Conduct      | Т4       |
| Mohamed A<br>Kamal         | Application of Bayesian Feedback Analysis to Test Competing Hypotheses of Discrepancy between Single and Multiple Ascending Dose Pharmacokinetic Data                                                              | Tools and Techniques      | A6       |
| Ping Ji                    | Modeling of Rich Pharmacokinetic Datasets Using SAEM Algorithm Implemented in MONOLIX 2.4                                                                                                                          | Tools and Techniques      | Н2       |
| Chee M Ng                  | Global Optimization and Pattern Search-based Optimization Algorithms for Parameter Estimation in Complex Pharmacokinetic/Pharmacodynamic Data Analysis                                                             | Tools and Techniques      | L2       |
| Anne Dubois                | Model-based analyses of crossover trials: extension of the SAEM algorithm in MONOLIX software and evaluation of Wald and likelihood ratio tests                                                                    | Tools and Techniques      | S2       |
| Bill Gillespie             | BUGSModelLibrary: A Prototype Model Library for Bayesian PKPD Modeling in WinBUGS                                                                                                                                  | Tools and Techniques      | U2       |
| Demiana William<br>Faltaos | Estimation of Population Pharmacokinetic Parameters Using MLXTRAN Interpreter in MONOLIX 2.4                                                                                                                       | Tools and Techniques      | U4       |
| Yaming Hang                | Comparison of Generalized Additive Model and Wald's Approximation Method for Covariate Selection in Population Pharmacokinetic Analysis                                                                            | Tools and Techniques      | Wall2    |

| WEDNESDAY MORNING          | RNING                                                                                                                                                             |                                    |          |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------|
| Name                       | Abstract Title                                                                                                                                                    | Topic                              | Location |
| Anson Kunjachan<br>Abraham | Role of Receptor Dimerization and Specific Tissue Distribution in Target-Mediated Drug Disposition Models.                                                        | Biologics                          | 82<br>C8 |
| Joerg Lippert              | Development of a generic physiologically-based pharmacokinetics model for protein therapeutics in PK-Sim®                                                         | Biologics, Mechanistic<br>Modeling | A7       |
| Chunlin Chen               | Modeling of The Intravascular Mixing Phase of Neuromuscular Blocking Agents<br>Following Intravenous Bolus Injection                                              | Clinical PK                        | 89       |
| Joy C. Hsu                 | Population Pharmacokinetics of PLX4032, a highly selective V600E BRAF kinase inhibitor, in Healthy Volunteers                                                     | Clinical PK                        | 97       |
| Kyle Baron                 | Pharmacometric Basis for a Fludarabine Test Dose Strategy in Nonmyeloablative Hematopoietic Stem Cell Transplantation                                             | Clinical PK                        | N8       |
| Patanjali Ravva            | Population pharmacokinetic model of sulopenem and an oral prodrug, sulopenem etzadroxil, in man, including interaction with probenecid                            | Clinical PK                        | Q2       |
| Parag Garhyan              | Poster: Population Pharmacokinetic Modeling of Enzastaurin and its Major Metabolite in Healthy Subjects and Cancer Patients                                       | Clinical PK                        | Q6       |
| France Varin               | In vivo-In vitro correlation between early systemic exposure and delivered dose of inhaled milrinone using two types of nebulizers.                               | Clinical PK                        | Q8       |
| Tushar Garimella           | Population Pharmacokinetic Analysis of ABT-089, a Neuronal Nicotinic Receptor Agonist, in Elderly Subjects with Alzheimer's Disease and in Healthy Adult Subjects | Clinical PK                        | R8       |
| Sandeep Dutta              | Population Pharmacokinetics of ABT-594 in Subjects with Diabetic Peripheral Neuropathic Pain                                                                      | Clinical PK                        | S5       |
| Susan Willavize            | Disease Progression of Cognitive Impairment in Alzheimer's Disease: A Model-<br>Based Approach                                                                    | Disease Modeling                   | B8       |
| Lars Lindbom               | A Drug Independent Tumor Size Reduction-Survival Model in Advanced Ovarian Cancer to Support Early Clinical Development Decisions                                 | Disease Modeling                   | E6       |
| Satjit Brar                | Hemodynamic Determinants of Clinical Endpoints in Pulmonary Arterial Hypertension Trials                                                                          | Disease Modeling                   | F8       |
| Kaori Ito                  | Disease Progression Analysis from ADNI Database in Normal, MCI and Alzheimer's Disease Patients.                                                                  | Disease Modeling                   | J6       |

| WEDNESDAY MORNING        | DRNING                                                                                                                                                                                                               |                                             |          |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------|
| Name                     | Abstract Title                                                                                                                                                                                                       | Topic                                       | Location |
| Kristin Karlsson         | Performance of the LAPLACE method in repeated time-to-event modeling                                                                                                                                                 | Event Driven Non-<br>continuous Data Models | D8       |
| Wei Liu                  | Modeling "Pain Memory" is Central to Characterizing the Hazard of Dropping Out in Acute Pain Studies                                                                                                                 | Event Driven Non-<br>continuous Data Models | P8       |
| Ruolun Qiu               | Modeling and Simulation of Plasma Abeta in Human After Multiple Oral Doses of PF-3084014, A Potent Gamma Secretase Inhibitor                                                                                         | Exposure-Response                           | B6       |
| Juan Jose Perez<br>Ruixo | Characterization of Platelet Cell Turnover in Thrombocytopenic Adults with ITP using a KPD model                                                                                                                     | Exposure-Response                           | 9Н       |
| Xiujiang (Susie) Li      | Population PK/PD Modeling of Efficacy and Safety of CB1R Inverse Agonist Taranabant in Obese Patients                                                                                                                | Exposure-Response                           | J8       |
| Christine Garnett        | Influence of Gender and Study Design on Moxifloxacin Concentration-QT                                                                                                                                                | Exposure-Response                           | P6       |
| Sandeep Dutta            | Population Analyses of Efficacy and Safety of ABT-594 in Subjects with Diabetic Peripheral Neuropathic Pain                                                                                                          | Exposure-Response                           | S6       |
| Gianluca Nucci           | Model-Based Meta-Analysis of Concentration-D2 Occupancy in Healthy Volunteers and Schizophrenic Patients                                                                                                             | Exposure-Response                           | T8       |
| TJ Carrothers            | Population Models Correlating Exposure to Efficacy and Safety Markers following Oral Administration of a Novel Fructose-1,6-Bisphosphatase Inhibitor in Type 2 Diabetic Subjects                                     | Exposure-Response                           | ٧8       |
| Micha Levi               | A mechanistic target mediated drug disposition (TMDD) model is required to correctly estimate the bioavailability of a subcutaneous formulation of Tocilizumab (TCZ), a monoclonal antibody with non-linear kinetics | Mechanistic Modeling/<br>Systems Biology    | D6       |
| Zheng Lu                 | Pharmacokinetic – Pharmacodynamic modeling of Tumor Growth Data from Mice Following Administration of Drug Candidate                                                                                                 | Mechanistic Modeling/<br>Systems Biology    | E8       |
| Jean R. Lavigne          | Simultaneous Modeling and Simulation of Glucagon, Glucose and Insulin                                                                                                                                                | Mechanistic Modeling/<br>Systems Biology    | Н8       |
| France Mentré            | Parameter estimation of long-term HIV dynamic model in the COPHAR2 – ANRS 111 trial using MONOLIX                                                                                                                    | Mechanistic Modeling/<br>Systems Biology    | M8       |
| William M. Sallas        | Population Pharmacokinetics for Penciclovir in Infants and Children for Famciclovir Dosing Recommendations                                                                                                           | Pediatrics                                  | К8       |

| WEDNESDAY MORNING   | RNING                                                                                                                                                                    |                                                |          |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------|
| Name                | Abstract Title                                                                                                                                                           | Topic                                          | Location |
| Craig M Comisar     | Determination of Operating Characteristics and Performance Requirements for a Vancomycin Forecasting Algorithm Used for Clinical Decision Support in Pediatric Patients. | Pediatrics                                     | 90       |
| Thaddeus Grasela    | Forensic Pharmacometrics: Part 1 - Data Assembly                                                                                                                         | Quality Assurance,<br>Forensic Pharmacometrics | N8       |
| Frank Jen           | Characterizing Nelfinavir Pharmacokinetic Changes During Pregnancy in HIV-Infected Women – Modeling and Simulations in Study Design                                      | Special populations                            | S8       |
| Jakob Ribbing       | Use of a Non-Parsimonious Model for Study Design                                                                                                                         | Study Design/Conduct                           | 99       |
| Tarek A. Leil       | Trial Simulation to Assess the Effect of Patient Compliance on Potential Outcomes in Population PK Studies                                                               | Study Design/Conduct                           | R6       |
| Joerg Lippert       | Unified statistical and physiologically-based modeling with PK-Sim® and MoBi®: PBPK meets NLME and MCMC                                                                  | Tools and Techniques                           | A8       |
| Sachin Sanduja      | Interactive, scalable and modular framework for data analysis: An application to population pharmacokinetic modeling.                                                    | Tools and Techniques                           | 90       |
| Margherita Bennetts | Simulation Methodology for Quantitative Study Decision Making with R/NONMEM6                                                                                             | Tools and Techniques                           | F6       |
| Jae Eun Ahn         | Longitudinal Model-Based Meta-Analysis with NONMEM                                                                                                                       | Tools and Techniques                           | K6       |
| Fang Li             | Implementation of Computer Cluster for Pharmacometric Analyses at FDA                                                                                                    | Tools and Techniques                           | F8       |
| Joseph Kahn         | Simulation Manager in R for Modeling and Decision Analysis                                                                                                               | Tools and Techniques                           | M6       |
| Helen Moore         | Mathematical optimization of therapies for chronic hepatitis C virus (HCV) infection                                                                                     | Tools and Techniques                           | N6       |
| Bill Poland         | Optimal Sequencing of Interdependent Drug Development Programs                                                                                                           | Tools and Techniques                           | 16       |

| WEDNESDAY AFTERNOON      | AFTERNOON                                                                                                                                              |                                    |          |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------|
| Name                     | Abstract Title                                                                                                                                         | Topic                              | Location |
| Timothy<br>Waterhouse    | Using Uncertainty in Exposure-Response Modeling and Simulation to Select Phase II Doses                                                                | Benefit/Risk<br>Assessment         | A3       |
| Jing Liu                 | Semi-Mechanism Based Nonlinear PK Modeling and Scaling of a Fully Human Antibody in Cynomolgus Monkeys Predicts the Nonlinear PK in Healthy Volunteers | Biologics                          | C5       |
| Leonid Gibiansky         | Mechanistic Interpretation of Indirect-Response Models for Drugs with Target-Mediated Disposition                                                      | Biologics                          | 72       |
| Leonid Gibiansky         | Target-Mediated Drug Disposition Model for Drugs with Multiple Targets                                                                                 | Biologics                          | 9/       |
| Stacey<br>Tannenbaum     | A Methodology for Model-Based Bioequivalence of Two Manufacturing Variants of a<br>Monoclonal Antibody                                                 | Biologics, Tools and<br>Techniques | J3       |
| Mark Lovern              | Use of a Short-Term Viral Dynamic Model to Predict Long-Term Clinical Outcome in Patients Receiving Anti-Retroviral Therapy for HIV-1 Infection        | Clinical Outcome<br>Modeling       | E3       |
| Michelle Green           | Quantitative Understanding of the Impact of Evolving Rescue Criteria in the Assessment of Anti-diabetic Compounds                                      | Clinical Outcome<br>Modeling       | F5       |
| Yoon Gyoon Kim           | Population pharmacokinetics of PD 0200390, a new calcium channel alpha-2-delta subunitbinding compound                                                 | Clinical PK                        | D3       |
| Seong Bok Jang           | The Use of Truncated Area under the Curve as a Measure of Relative Extent in Bioequivalence Studies                                                    | Clinical PK                        | K5       |
| Hongseok Chae            | Comparing simulated responses to risperidone and extended release (ER) paliperidone                                                                    | Clinical PK                        | M3       |
| Satyendra<br>Suryawanshi | Empirical Disease Progression Model for Ranibizumab in Age-Related Macular Degeneration                                                                | Disease Modeling                   | G5       |
| James A. Rogers          | Population Dose-Response Model for ADAS-cog Scores in Patients with Alzheimer's Disease by Meta-Analysis of a Mixture of Summary and Individual Data   | Disease Modeling                   | F3       |
| Nitin Mehrotra           | Value of collecting PK in late phase clinical trials                                                                                                   | Drug Development                   | F3       |
| Paul Panorchan           | Evaluation of the Dose-Response Relationship to Short-term Monotherapy with the HCV Protease Inhibitor, MK-7009                                        | Exposure-Response                  | B5       |
| Sriram<br>Krishnaswami   | PK/PD of Celecoxib in Pediatric Patients with Juvenile Rheumatoid Arthritis                                                                            | Exposure-Response                  | C7       |

| WEDNESDAY AFTERNOON       | AFTERNOON                                                                                                                                                                                    |                                          |          |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------|
| Name                      | Abstract Title                                                                                                                                                                               | Topic                                    | Location |
| Sandeep Dutta             | Population Pharmacokinetics and Exposure Response of Valproic Acid in Mania Associated with Bipolar Disorder-A Combined Analysis of Two Placebo-Controlled Phase 3 Trials                    | Exposure-Response                        | Н3       |
| Herbert<br>Struemper      | Estimation of the PK-Receptor Occupancy Relationship Based Upon PET Data with Large Test-Retest Variability.                                                                                 | Exposure-Response                        | N5       |
| Immanuel<br>Freedman      | Bayesian Parametric Schild Analysis of Data from a Whole Blood Stimulation Assay.                                                                                                            | Exposure-Response                        | Р3       |
| Tonya Quinlan             | Pharmacokinetic/Pharmacodynamic Modeling of the Effects of Duloxetine on 3,4-dihydroxyphenylglycol (DHPG) in Plasma and Cerebrospinal Fluid in Healthy Subjects                              | Exposure-Response                        | Q3       |
| Ahmed Salem               | Pharmacodynamic Assessment of Vancomycin-Rifampin Combination against Methicillin-<br>Resistant Staphylococcus aureus Biofilm                                                                | Exposure-Response                        | S3       |
| Daniele Ouellet           | Semi-Physiological Population PK/PD Modeling of Eltrombopag in Healthy Volunteers and Patients with Idiopathic Thrombocytopenic Purpura                                                      | Exposure-Response                        | ٧3       |
| Michael Pelekis           | Mechanistic Evaluation of the Population Systemic Exposure Related to the Use of Acetaminophen using GastroPlus™                                                                             | Mechanistic Modeling/<br>Systems Biology | D5       |
| John Harrold              | Mechanistic Modeling of Combination Rituximab and rhApo2L Chemotherapy in Mice Bearing Ramos Lymphoma Xenografts                                                                             | Mechanistic Modeling/<br>Systems Biology | J5       |
| Mahesh N.<br>Samtani      | Simple Pharmacometric Tools for Oral Anti-Diabetic Drug Development: Competitive<br>Landscape for Oral Non-Insulin Therapies in Type 2 Diabetes                                              | Mechanistic Modeling/<br>Systems Biology | K3       |
| Joerg Lippert             | Multi-scale PK/PD modeling and simulation using PK-Sim® and MoBi®: A mechanistic wholebody pharmacogenomics model of tumor growth and cytostatic intervention                                | Mechanistic Modeling/<br>Systems Biology | L5       |
| Cornelia<br>Landersdorfer | Population PK/PD Modeling of the Effects of Vildagliptin on Active GLP-1, Glucose, and Insulin                                                                                               | Mechanistic Modeling/<br>Systems Biology | N3       |
| Fahima Nekka              | Evaluation of the Pharmacological Effect Induced by Patient Irregular Drug Intake                                                                                                            | Mechanistic Modeling/<br>Systems Biology | T5       |
| Dana Nickens              | A Model-based Dose-response Meta-analysis of Single Agent Intraocular Pressure (IOP)<br>Therapies Used to Evaluate Efficacy of a Potential New Therapy (PF-03187207) in Glaucoma<br>Patients | Model-based meta<br>analysis             | U3       |
| Ying Hong                 | Model-based Analysis to Propose Atazanavir Doses for HIV-Infected Pediatric Patients                                                                                                         | Pediatrics                               | G3       |
| James R. Bosley,<br>Jr.   | Pharmacokinetic Modeling, Simulation, and Scaling of Adult and Pediatric Data to Support International Regulatory Submissions                                                                | Pediatrics                               | R5       |

| WEDNESDAY AFTERNOON | AFTERNOON                                                                                                                                                                                         |                      |          |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------|
| Name                | Abstract Title                                                                                                                                                                                    | Topic                | Location |
| Kuenhi Tsai         | Sensitivity Analysis on an IVIVC PK/PD Model                                                                                                                                                      | Sensitivity analysis | H5       |
| Helen Kastrissios   | A Population Pharmacokinetic Model for a Novel Oral Hypoglycemic Formed In Vivo:<br>Comparing the Use of Active Metabolite Data Alone versus Using Data of Upstream and<br>Downstream Metabolites | Special populations  | US       |
| Thu Thuy<br>Nguyen  | Design evaluation and optimization in crossover pharmacokinetic studies analyzed by nonlinear mixed effects models. Application to bioequivalence or interaction trials.                          | Study Design/Conduct | B3       |
| Joakim Nyberg       | Optimal design on Time-To-Event models with an emphasis on dropouts in Disease<br>Progression studies                                                                                             | Study Design/Conduct | P5       |
| Partha Nandy        | Evaluation of Exposure-response in Flexible Dose Clinical Trials: Comparison of Mixed Model Repeated Measures (MMRM) and Marginal Structural Models (MSM) via a Simulation Study                  | Tools and Techniques | A5       |
| Mark Sale           | Parallel Execution of NONMEM                                                                                                                                                                      | Tools and Techniques | E5       |
| Jonathan French     | MSToolkit – An R library for simulating and evaluating clinical trial designs and scenarios                                                                                                       | Tools and Techniques | M5       |
| Holly Kimko         | In Vitro – In Vivo Correlation of Extended Release Tablets to Support Proposed Bioequivalence Specifications                                                                                      | Tools and Techniques | Q5       |
| Xiaoli S. Hou       | D-optimal Design for PK Modeling                                                                                                                                                                  | Tools and Techniques | R3       |
| Charles Apelian     | MODESIM – A high-performance computing environment for pharmacometrics and beyond                                                                                                                 | Tools and Techniques | Т3       |

### **ACoP 2009 Exhibitors**



#### The AEgis Technologies Group

acsIX is used in a diverse range of applications in biological modeling including: classical compartmental PK/PD, physiologically-based PK, population PK/PD, disease modeling, systems biology, virtual tissues and organs, and IVIVC.

#### acslX is intuitive

- Models are constructed using either a simple equation-based language, or by composing models diagrammatically using "blocks" of pre-built model components
- Parameter estimation, sensitivity analysis, and Monte Carlo analysis studies are designed using a simple wizard-based user interface
- Scripts for controlling simulation runs and performing complex analyses can also be created using a Matlab-like scripting language
- Models can be constructed using the PBPK/PK/PD toolkit of pre-built simulation blocks, and an SBML import utility is provided for automatically generating acslX models from SBML

#### acslX is flexible

- acslX supports a wide range of robust algorithms for the numerical solution of ordinary differential equations, differential algebraic equations, delay differential equations, and discrete event behavior
- Analyses include a robust parameter estimation engine supporting maximum likelihood and nonlinear weighted least-squares techniques; global and local sensitivity analysis; conventional Monte Carlo analyses; and a statistical modeling language for user-defined Bayesian inference studies
- acslX models can be executed and analyzed in a variety of environments, including acslX itself, Microsoft Excel, Mathwork's Simulink/Matlab, and the freely available acslX Calc. Data import/export from Microsoft Access and Excel is easily performed

#### acslX is fast

- Models are compiled into executable binary code ensuring the fastest possible performance and support for extremely large or complex models
- Cluster computing extensions are provided to parallelize analyses in acslX, and cloud-hosted versions of acslX applications are available

#### acslX is open

- Models supplied with acslX are open and transparent, meaning the model code can be inspected and modified
- Many of the analyses used in acslX are implemented as M scripts, which can also be inspected and modified by end-users
- Open software interfaces are provided throughout the system for extending the capabilities of the acslX environment in a variety of ways

#### acslX is affordable

- Licenses for acslX start at \$500
- The acslX Calc application for running and analyzing simulations created in acslX is freely downloadable and redistributable
- Corporate site licenses start at \$7500
- acslX is completely free for educational use

For over 30 years, acslX and its predecessor ACSL have provided scientists and engineers with a powerful and flexible software environment for modeling, simulation and analysis of complex nonlinear biological systems and data.

More information about acslX is available at www.acslX.com, 800-647-ACSL or info@acslX.com.



Bayer Technology Services relies on mechanistic modeling of biological systems and their interaction with pharmaceuticals to gain comprehensive understanding of complex dynamical processes involved and, thus, to support decision making along the pharma research and development process.

Bayer Technology Services offers software products for predictive simulation of drug behavior and modeling of cellular pathways as well as professional consulting services, integrating many years of in-house and external market experience.

The Bayer Technology Services software products are fully integrated into one Computational Systems Biology Software Suite (CoSBiSS), which represents a user-friendly and flexible software package for mechanistic modeling and simulation in pharma research and drug development:

- PK-Sim® The comprehensive software tool for whole-body physiologically based pharmacokinetic modeling.
- MoBi® The systems biology software tool for multiscale physiological modeling and simulation.
- MoBi® Toolbox for MATLAB® The advanced tool integrating multiscale physiological modeling and simulation with technical computing.
- MoBi® Toolbox for R The advanced tool integrating multiscale physiological modeling and simulation with statistical computing.

Bayer Technology Services efficiently executes application projects in pharma research and life sciences due to its unique software platform and its broad experience gained in more than 100 application projects executed in following areas:

#### **Drug Discovery Support**

- Target Identification & Validation
- Biomarker Analysis
- Proof-of-Mechanism

#### **Drug Development Support**

- Species Extrapolation
- Extrapolation to Special Populations
- Proof-of-Concept
- Bioequivalence Studies

www.systems-biology.com info@systems-biology.com



Entelos (www.entelos.com) PhysioLab® platforms enable modelers to manage what is quantitatively known and unknown about disease processes, PK/PD, and patient responses to standard and novel treatment combinations, to better inform decision-makers through the robust prediction of clinical outcomes. Our cross-disciplinary teams of Ph.D. scientists and engineers use state-of-the-art PhysioLab technology to conduct in silico R&D in collaboration with our clients' clinical, pharmacometric, and preclinical experts.

Entelos has helped its pharmaceutical partners to:

- Save time and reduce patient requirements for clinical trials
- Determine the optimal dose for a clinical trial
- Compare efficacy of new compounds and combinations to standards of care
- Advance complex clinical strategies to meet efficacy, regulatory, and marketing requirements
- Identify compound/target advantages to support competitive differentiation claims
- Discover novel biomarker panels
- Translate results from preclinical experiments to clinical studies and results

Key features of the PhysioLab platforms and software tools include:

Virtual Patients and Populations are a key part of the PhysioLab technology, enabling the exploration of the full range of patient variability and alternate mechanistic hypotheses all layered on top of the core PhysioLab model. Virtual populations are designed to mirror real clinical populations and are then utilized for running simulated clinical trials and biomarker analyses.

Parameter and Simulation Management is optimized for efficiency in the software thus enabling high throughput and batch simulation runs for evaluation of variant PK, uncertainty in pharmacodynamics, and population variation. The results are stored in an Oracle® database and can be exported for analysis in other tools (e.g., Microsoft® Excel®, SAS®, Spotfire®) and an API enables interfacing with MATLAB and custom scripting.

Integrated Documentation allows data, modeling rationale, and parameter value sources to be annotated within the model and shared between users. This capability supports a corporate knowledge base by providing a knowledge management platform, as well as a learning tool for new users.

PhysioLab platforms are available in the following areas:

- Cardiovascular Atherosclerosis, Cholesterol, Hypertension/RAAS
- Metabolism Type 2 Diabetes, Obesity
- Respiratory Asthma
- Autoimmune Rheumatoid Arthritis, Type 1 Diabetes
- Hematopoiesis Anemia
- Skin Sensitization



GVK Biosciences, Asia's leading Contract Research Organization, delivers customized innovative and value added services with speed and quality to leading Pharma, biotech and other companies in the area of Life Sciences.

In order to increase the success rate in Clinical Studies, a number of novel and innovative approaches such as PK/PD modeling of clinical data or the usage of Biomarkers are being followed in the recent past. GVK BIO has been offering customized services in both these areas. We have a unique Clinical Biomarker online database (www.gobiomdb.com). In PK/PD modeling and Simulation studies we offer manually curated Clinical Pharmacology databases for a number of Therapeutic areas/indications. These databases and associated custom curation process offer:

- Predictive modeling tools provide invaluable information to better streamline the drug development process
- Modeling approaches prove useful in determining relationships between biomarker responses, drug levels, and dosing regimens of new drugs faster and at a lower cost.
- We build and maintain indication specific clinical trial outcome databases to support simulation and modeling efforts

GVK BIO provides premier quality customized services that are regarded by our clients as highly effective.

Novartis accredits "The partnership with GVK Bio for data extraction and populating the spreadsheet has been established and has proved very effective" - Population Approach Group Europe (PAGE), June 23-26, 2009.

GVK BIO has also partnered with Quantitative Solutions, a modeling and simulation consultancy to the pharmaceutical and biotech industry, to market the existing QS clinical outcomes databases and to develop/market additional databases in high value disease areas.

- The databases capture summary level data for the clinical safety and efficacy outcomes from publicly available data sources. Models derived from them can be used to characterize the probability distribution of clinical efficacy and tolerability as a function of various treatment and patient factors.
- The databases can help companies conduct comparative efficacy and safety analysis, link/scale biomarkers to clinical outcomes, predict/improve trial outcome, and develop product differentiation strategies.
- The databases are supported by customization and M&S consulting services provided by GVK Bio and QS, respectively, to ensure maximum flexibility and benefits to our clients

In the future GVK BIO plans to expand its services from data curation to data analytics, providing modeling and simulation services to support drug development decision making.



#### Development Solutions

ICON Development Solutions specializes in the strategy and delivery of early-phase clinical development services to enable informed, timely decision making for our clients. With global clinical pharmacology and bioanalytical capabilities, ICON offers industry-leading solutions in early-phase clinical research, bioanalytical/immunoassay, biomarkers, PK/PD modeling & simulation and the full range of support services. Our multi-disciplinary experts incorporate scientific excellence and product development strategy in all that we do -- with the experience to address the most demanding drug development challenges with an unyielding focus on completing clinical studies on time, on budget and with the quality that will withstand the most vigorous scrutiny.

ICON Development Solutions is proud to announce the release of NONMEM® 7, the Software that has facilitated the analysis of data for pharmaceutical research and development for the last 30 years; the Gold Standard for population Pharmacokinetic / Pharmacodynamic analysis.

NONMEM® 7 is the only program that offers all of these methods under one roof:

- FO
- FOCE
- ITS
- Importance Sampling EM
- SAEM
- MCMC Bayesian Analysis

Other improvements found in NONMEM® 7 include: Improved incidence of completion when using the multiple problem feature; three stage hierarchical Markov Chain Monte Carlo (MCMC) methods; improved efficiency and incidence of success in problems using the classical NONMEM® method and many more that you will get to experience with your new software. NONMEM® 7 also provides a comprehensive tool-kit in an easier to use package to facilitate population-based data analyses, and improves the rate of success of analyzing complex PK/PD models.

# mangosolutions

Mango Solutions is a privately owned data analysis company producing tailored solutions for it's customers. Based in the UK but operating globally Mango have customers on several continents and work with some of the largest companies in the world such as KPMG and BP. Mango work with the biggest companies in the pharmaceutical sector such as Pfizer, Novartis and GSK among others.

Mango have a team of mathematicians, statisticians and IT programmers who provide a range of services including:-

- Customised training courses
- Application development services
- Data analysis consulting
- Support and validation of code

Mango have wide experience of technologies such as R, SAS, S-PLUS and Matlab and are able to integrate and develop these technologies to suit customer requirements. In all engagements Mango's methodology is to work closely with its customers to ensure complete satisfaction.

For more details of how we help our pharmaceutical customers please go to www.mango-solutions.com



MathWorks provides software tools for the entire PK/PD workflow, from modeling to analysis, within a single graphical environment. MathWorks PK/PD modeling environment, SimBiology®, provides point-and-click tools to make PK/PD modeling and analysis accessible, even for researchers with little to no programming experience. Built on MATLAB®, SimBiology provides direct access to an industry-tested simulation solver suite, and allows integration of PK/PD modeling with other functionality such as parallel computing, statistics, and optimization. SimBiology also allows modelers the ability to experiment with new cutting edge trends, such as integrating mechanistic and physiologically-based PK models.

Employing more than 2,000 people, The MathWorks was founded in 1984 and is headquartered in Natick, Massachusetts, with offices and representatives throughout the world. The company has been profitable every year since its inception and is privately held. Over 1,000,000 scientists and engineers in more than 100 countries, on all seven continents, use MathWorks products.



Metrum Institute is a nonprofit organization dedicated to solving unmet needs in biomedical research through quantitative modeling and simulation. Our efforts include applied academic research, training, education, resource sharing, and research and development efforts focused on new open-source tools and methods. For more info visit: www.metruminstitute.org



Metrum Research Group provides contract services aimed at enhancing biomedical R&D through quantitative modeling and simulation. Our collaborations with the pharma/biotech industry are characterized by cutting-edge science, transfer of knowledge, quality deliverables and innovative, strategic application of modeling and simulation technologies. For more info visit: www.metrumrg.com



# Phoenix NLME<sup>TM</sup> - The Future of NLME Modeling

- Flexible user interface allowing users to create models using library models, a graphical modeling tool, or using the new Pharsight Modeling Language (PML).
- Many default high quality plots generated for each model run including lattice plots, q-q plots, covariate plots, conditional weighted residuals plots, histograms of etas, residual plots with LOESS and absolute LOESS trend lines, and more.
- Parametric, FO and FOCE algorithms, including a nonparametric method. User defined log-likelihood for userspecified models.
- Stepwise and shotgun covariate search methods, Predictive Check and Bootstrap options as well as the NLME Model Comparer which allows for the comparison of model results and plots.
- Parallelized NLME algorithms supported by Intel's® multi-core CPU platforms increases speed (e.g.: a single run can be split up and processed by as many processors as available in your computer). With some customization, NLME can be connected to your grid or cluster.
- Graphical workflow engine integrates data preparation, modeling and model selection, and generation of high
  quality tables and figures. Individual steps or a group of steps can be saved as templates to reuse with other
  datasets.
- One single file contains all inputs, settings, and outputs of analyses steps. For example, data preparation, several models, and post-model processing of results are all saved under a phoenix project (i.e. one file).
- Optional integration with Pharsight's PKSTM data management system.

### Phoenix Connect<sup>TM</sup>

- Allows users to run a variety of third party tools under a single Phoenix project file that can be shared, rerun, changed, and even saved as part of a workflow template that can be reused later with other datasets. With Phoenix Connect, you get all of the features of the Phoenix platform (e.g. data tools, graphics, tables) but other software applications can be used to perform other type of analyses.
- Interfaces with the following software applications:
  - Pharsight® Knowledgebase ServerTM (PKSTM)
  - o PhoenixTM WinNonlin® 6.0
  - o SAS® 8 & 9
  - o S-Plus® 8
  - o R 2.9.1
  - o NONMEM® 5 & 6
  - SigmaPlot® 9.0.1, 10, 11.1
  - ODBC data sources
  - o Microsoft® WordTM & Excel® 2000, XP, 2003, 2007
- Provides the capability to import and export CDISC STDM SAS transport datasets.
- Provides a tool to compare results of NONMEM runs including comparison of output plots.

For more information, visit www.pharsight.com



With a growing team of exceptional scientists and a world-class expertise in oral drug delivery, pharmacokinetics, & pharmacodynamics, Simulations Plus is a leading developer of large scale system simulations and high quality, rapid structure-property modeling software for the pharmaceutical industry.

ADMET Predictor<sup>TM</sup> is a computer software program for advanced predictive modeling of numerous vital ADMET properties from molecular structures, including pKa, permeability, logP/logD, solubility, Vd, protein binding, BBB penetration, CYP metabolism (1A2, 2C9, 2C19, 2D6, 3A4), multiple toxicities, and simulated Fa at multiple dose levels. Additionally, via its integrated ADMET Modeler<sup>TM</sup> module, it is also capable of building predictive models of new properties from user's data. The program predictions can be further utilized as inputs for our software products GastroPlus and ClassPharmer, or used internally by a flexible screening filter ADMET Risk that can include any combination of predicted properties.

ClassPharmer<sup>TM</sup> is an intuitive cheminformatics platform supporting lead identification and prioritization, de novo design, scaffold hopping and lead optimization. The software is divided into four modules - Basic, SAR, Design, and ADMET - each of which can be licensed separately.

DDDPlus<sup>TM</sup> (Dose Disintegration and Dissolution Plus) - the world's only in vitro dissolution software for the formulation scientist - is an advanced technology computer program that models and simulates the in vitro dissolution of active pharmaceutical ingredients (API) and formulation excipients dosed as powders, tablets, and swellable or non-swellable polymer matrices under various experimental conditions.

GastroPlus<sup>TM</sup> is used by more pharmaceutical researchers than any other oral absorption/pharmacokinetic/pharmacodynamics software package. This includes nearly all of the top 20 pharmaceutical companies in the world. You, too, can benefit from the world's most powerful analytical capability for oral absorption pharmacokinetic/pharmacodynamics (combined with world-class support) at a fraction of the cost to develop and maintain an equivalent capability in-house.

#### Benefits of GastroPlus

- Rapid analysis and understanding of the behavior of drug candidates in animals and human.
- Rapid ability to test hypotheses regarding formulation, changing physicochemical parameters, fasted and fed state effects, ionization effects on solubility and absorption, and more.
- Ability to quickly estimate the best dosing options for toxicity studies in animals.
- Ability to fit absorption/pharmacokinetic models to Phase I data in human, and with those models, to determine
  optimum dosing for later phases.

Web: www.simulations-plus.com



**MashFrame** - Mine, Analyze, Report and Share. Like never before...

MashFrame and MashObject Technology helps business users across enterprise to quickly and easily access, mine, analyze, report and share data. This is an application framework based on open XML standards allowing flexible and seamless integration with other enterprise systems, databases, document repositories, third party applications and the corporate intranet.

This framework can be used to support following Pharmacometrics related needs...

- 1. Automated data collection and validation
- 2. Data cleanup and preparation
- 3. Data modeling and simulation using multiple industry standard applications
- 4. Automated alerts, reports and exports
- 5. Scalable framework to meet computation intensive analysis
- 6. Integration with grids and cloud computing environments

This technology platform also allows programmers to rapidly build applications, reports and widgets by creating and reusing objects. It provides a lower cost and quicker to market alternative to traditional higher cost longer to market solutions.

www.mashframe.com www.rudraya.com



TIBCO Software Inc. is a leading provider of enterprise analytics software for next generation business intelligence. TIBCO Spotfire products offer a visual and interactive experience that helps professionals quickly discover new and actionable insights in information. Distinguished by its speed to insight and adaptability to specific business challenges, Spotfire rapidly reveals unseen threats and new opportunities, creating significant economic value. Spotfire customers include industry leaders among the Global 2000 that have deployed Spotfire analytics to gain an information advantage over their competitors.

From early stage discovery research to sales force optimization, Spotfire helps the world's leading pharmaceutical companies discover new therapeutics, develop and launch them to the market, and align sales and marketing campaigns to maximize return on their enterprise information investments.

#### Our products include:

- TIBCO Spotfire Full-featured analysis environment for business professionals and business analysts
- TIBCO Spotfire Lead Discovery Visual and interactive environment for exploring the effects of chemical structure on biological activity
- TIBCO Spotfire Integromics Biomarker Discovery Advanced methods for data access, normalization, pattern detection, treatment comparison, and functional analysis for scientists analyzing genomic expression data.
- TIBCO Spotfire S+ Statistical analysis, graphics and programming for Windows, UNIX and Linux
- TIBCO Spotfire Miner Data mining software for massive data sets using visual data analysis workflows.
- TIBCO Spotfire S+ Server Deploy advanced analytics enterprise-wide
- TIBCO Spotfire Clinical Graphics Rapid definition, production and reuse of reporting graphics without programming
- TIBCO Spotfire S+ FinMetrics Modern and flexible analytics for powerful econometric analysis.
- TIBCO Spotfire S+ NuOPT Fast numerical optimization of functions of many variables.
- TIBCO Spotfire S+ SeqTrial Design of group sequential clinical trials.

Website: http://spotfire.tibco.com

# Applications of Modeling over the Development Life Cycle of Biologics Session Chairs: David D'Argenio and Don Mager

#### Predicting Human Pharmacokinetics-Pharmacodynamics of Biologics from Animal Data

Peiming Ma (1), Juan Jose Perez Ruixo (2)

(1) Amgen, Inc. Thousand Oaks, CA, USA; (2) Amgen, Puzol, Valencia, Spain

Over the years, the field of pharmacokinetic-pharmacodynamic (PK-PD) modeling and simulation (M&S) has clearly moved from using empirical functions to describe the data to developing mechanism-based PK-PD models that reflects the essential underlying physiology and allows for better quantification of the drug disposition and dynamics. Besides the physiology-based pharmacokinetic modeling, different methods have been used to scale the PK-PD properties of small molecules from animal to human. These methods normally are based on the allometry theory and use different approaches to deal with interspecies differences in protein binding and/or renal/liver elimination, which might not be relevant for biologics. In addition, these methods assume the amount of drug bound to the receptor is negligible compared with the dose administered, but the assumption is invalid for most of the biologics. Consequently, predicting human PK-PD of biologics from animal data presents unique challenges. Among them, the interspecies differences in the capacity and the affinity of the drug binding to the receptor, the receptor turnover rate and the immunogenicity are relevant factors to be considered in 1) selecting the relevant specie(s) to conduct adequate PK-PD studies, 2) developing appropriate models for integrating the animal PK-PD data, 3) predicting the human PK-PD properties from animal data, and 4) optimizing the design of first-time-in-man studies. Perhaps due to these complexities, there are only limited examples of interspecies PK-PD scaling successfully applied to biologics. In this talk, we will present examples that show the application of the population PK-PD M&S techniques to factor in these complexities, to successfully predict the human PK-PD of biologics from animal data, and to facilitate the early decision-making processes for planning clinical development strategies.

# Modeling and simulations for assessment of pharmacokinetics and pharmacodynamics of a G-CSF biosimilar

Wojciech Krzyzanski (1), Pawel Wiczling (2), Phil Lowe (3), Etienne Pigeolet (3), Martin Fink (3); Alexander Berghout (4), Sigrid Balser (4)

(1) Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, USA; (2) Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdansk, Poland; (3) Novartis Pharma AG, Modeling & Simulation, Basel, Switzerland; (4) Sandoz Biopharmaceutical Development, Oberhaching, Germany.

**Objectives:** Zarzio<sup>®</sup> (EP2006) is a biosimilar of Neupogen<sup>®</sup> a recombinant human granulocyte colony stimulating factor (G-CSF). G-CSF is an endogenous protein also administered as a drug to stimulate production of neutrophils. The biological activity of rHuG-CSF is identical to the endogenous G-CSF. The disposition of rHuG-CSF is mostly determined by binding to its receptors that are expressed majorly on neutrophils. The objective of this analysis was to develop a pharmacokinetic (PK) and pharmacodynamic (PD) model that expands existing models of filgrastim to account for an increase in rHuG-CSF clearance upon multiple dosing due to an increase of the G-CSF receptor mediated endocytosis and apply it to describe PK/PD of Zarzio<sup>®</sup> in healthy volunteers. The model has been used to study the role of the dynamics of the G-CSF receptor pool on the change in C<sub>max</sub>, AUC, and CL parameters upon multiple subcutaneous injections.

Methods: Healthy male (n=81) and female (n=63) volunteers were treated in four randomized crossover studies with two filgrastim products (Neupogen® and Zarzio®). We show results on modeling the Zarzio® data; to avoid possible period effects, only data from the first period were analyzed. Plasma concentration-time records were evaluated from rich sampling profiles. Filgrastim was administered as repeated s.c. daily administration for one week of 2.5, 5 and 10 μg/kg doses and as single i.v. (5 μg/kg) and s.c. (1 μg/kg) doses. Pharmacodynamic data (blood absolute neutrophil count, ANC) were available for the same time intervals. The PK model included first-order elimination from plasma, receptor binding, and internalization of drug receptors complexes. The PD model consisted of a series of transit compartments that represented the aging populations of neutrophil precursors in the bone marrow pool, and a neutrophil blood compartment. The rHuG-CSF effects were on the acceleration of the differentiation and maturation of the precursor cells and stimulation of the proliferation of the neutrophil progenitors in the bone marrow. The PD model was unable to identify a rHuG-CSF mobilizing effect on neutrophil precursors in the bone marrow and the rHuG-CSF effect of marginalization of circulating neutrophils that have been reported for single dose data. Consequently, these processes were excluded from the final model. All effects were described by the stimulatory Hill functions with a common SC<sub>50</sub> and process specific S<sub>max</sub> parameters. A feedback process from ANC controlling the total G-CSF receptor pool was included. Population nonlinear mixed-effect modeling was done using NONMEM VI. The first-order conditional estimation with interaction (FOCE) method was used.

**Results:** The estimate of the Zarzio<sup>®</sup> volume of distribution  $(V_D)$  was 3 L and the bioavailability of the drug from the subcutaneous site was about 70%. Due to model over parameterization, the PK model of target mediated disposition was reduced utilizing a quasi equilibrium assumption. The estimated typical value of the equilibrium dissociation constant  $(K_D)$  was 62 pM which is close to the  $K_D$  range 77-140 pM reported for rHuG-CSF. The model depicted the decaying trend in  $C_{max}$  values with repeated doses as well as an increase in ANC<sub>max</sub> values consistently with an increase in the G-CSF receptor pool. Similarly, the calculated clearances after each dose exhibited an increasing pattern. The typical value of  $SC_{50} = 2$  ng/mL was greater than the plasma concentration troughs for the highest SC dose. The estimates of  $S_{max}$  values were in the range 30-40 indicating a substantial increase in the neutrophil production upon exposure to the drug. The estimate of the blood neutrophil half-life was 9 h which is consistent with the values reported in the literature.

**Conclusions:** The presented model expanded previously published PK/PD models for filgrastim and pegfilgrastim by addition of the target mediated drug disposition. The increase in rHuG-CSF clearance upon multiple dosing was attributed to the increased ANCs paralleled by an increase in the total G-CSF receptor density. Simultaneous modeling of Zarzio<sup>®</sup> plasma concentrations and ANC was necessary to adequately describe PK data.

# Population Pharmacokinetic-Pharmacodynamic Modeling of Biological Agents: When Modeling Meets Reality

Diane R Mould PhD, FCP and Bill Frame MS

Projections Research Inc 535 Springview Lane Phoenixville PA 19460 USA

#### **Overview:**

The pharmacokinetic and pharmacodynamic behaviors of many biological therapeutic agents have inherent complexities that require specialized modeling approaches in order to develop reliable, unbiased models. Several commonly encountered cases will be presented, including data that has a preponderance of zero values, subjects whose pharmacodynamic trajectories are not predictable based on a structural model, and evaluating models in adaptive dosing situations.

#### Preponderance of Zero values:

For engineered antibodies, it is not unusual to see high specificity and affinity for the target receptors. The concentration response relationship for these agents is very steep. Thus, many therapeutic monoclonal antibodies that are targeted against cell surface receptors can, at therapeutic doses, saturate these receptors. In this situation, free receptor levels fall to zero and may stay there for protracted periods of time, leading to a large number of zero values in the database. Owing to the assay methodology (usually FACS), the zero values are real observations and cannot be deleted from the database. The distribution of observations is heavy at, and near, the boundary and simple transformation (e.g. converting data to % saturation for instance) does not alleviate this problem. To model such data, a two part model (truncated delta lognormal distribution) may be utilized Zero observations are treated in an altered zero fashion and are modeled as discreet, so that the probability of a zero response is modeled. The natural logarithms of responses with values larger than or equal to 0.1 are modeled as if they arise from a truncated log normal distribution. This approach provides a distinct advantage because the output is a probability curve showing probability of saturation versus MAb concentration, which can be used to guide dose regimens that have optimal receptor saturation.

#### **Models for Indescribable Subpopulations:**

Most mixture models identify subpopulations based on bimodal or multimodal distributions of eta values. These subpopulations have an implied association with a missing covariate. In pharmacodynamic models, such subpopulations may arise due to subjects that are poor responders to a specific treatment. However, with biological agents, subject response may be completely compromised due to lack of receptors, or the measured pharmacodynamic marker may be affected due to other events resulting in large, erratic excursions of the marker. These subjects exhibit a large residue random walk around baseline or around a placebo trajectory. While on the average they are non-responders, locally in terms of time these subjects might be hyper-responders.

Eta distributions in this latter situation are often badly skewed but not modal, and transformation is not beneficial. Models are characterized by high residual variability. Stuart Beal proposed an alternative mixture model which he referred to as the "indescribable model". In this unique mixture model, the mixture is based on application of separate functions to a subpopulation where the indescribable population is allowed to progress as an untreated patient might. This latter mixture model also separates out subjects who are non responders, and can provide valuable diagnostic information into the pharmacological behavior of the drug.

#### Evaluation of models when adaptive dosing is used:

Many biological agents have adaptive dosing strategies which are based on a pharmacodynamic marker of interest. For example, alemtuzumab is targeted against CD52 which is present on lymphocytes, and acts to reduce their number. Dosage adjustments for this MAb are made based on absolute neutrophil count. When pharmacokinetic/dynamic models for agents that use adaptive dosing strategies are developed, the data used to develop the model includes the adaptive dosing. However when predictive checks are conducted with such agents, an adaptive dosing strategy must also be implemented. Failure to account for adaptive dosing in predictive checks can result in biased or inflated prediction intervals because subjects in the simulated data will have undergone dose adjustments for no viable reason. This impacts particularly for pharmacodynamic models, but also affects pharmacokinetic models for biological agents when the pharmacokinetics are affected by the pharmacodynamic response.

# Model and Data Sharing Initiatives Session Chairs: Klaus Romero and Brian Corrigan

#### TIPharma mechanism-based PKPD modeling platform

#### Meindert Danhof

Leiden University, Leiden-Amsterdam Center for Drug Research, P.O. Box 9502, 2300 RA Leiden, the Netherlands (www.lacdr.nl)

The "TIPharma mechanism-based PKPD modeling platform" is a public private partnership, sponsored by the Dutch Government through the Dutch Top Institute Pharma (TIPharma) (www.tipharma.com) with 7 industrial and 4 academic partners. The industrial partners in the platform are: Astellas, Eli Lilly, GlaxoSmithKline, Johnson & Johnson PRD, Nycomed, Pfizer and Schering-Plough. The academic partners are: Leiden University (coordinator), State University Groningen, Utrecht University and Erasmus University Rotterdam.

The objective of the platform is the development and implementation of a mechanism-based PKPD model library + a database of biological system specific information for use in drug discovery and development. The platform focuses on three key areas in drug research.

- 1. <u>Translational pharmacology</u>: the development of mechanism-based PKPD models for the prediction of efficacy-safety from non-clinical investigations. Current research projects focus on cardiovascular safety, neuropathic and schizophrenia.
- 2. <u>Developmental pharmacology</u>: modeling of the developmental changes in the expression and function of biotransformation enzymes, transporters and receptors in pediatrics. Current research projects focus on cytochrome P-450 isoenzymes, glucuronyl transferases, ABC transporters in renal excretion, opioid receptors, GABA receptors
- 3. <u>Disease systems analysis</u>: mechanism-based modeling of disease progression. Current research projects in this area focus on osteoporosis, COPD and schizophrenia.

A key feature of the platform is that, where possible, mechanism-based PKPD models are developed using existing data. To this end the partners have agreed to the sharing of data, models and biological system specific information. To enable this, a data management system is developed for semi-automated merging of data sets, data storage, with versioning of analyses, models and results.

#### The Coalition Against Major Diseases: Review of goals, accomplishments and future plans

#### Klaus Romero

Critical Path Institute (C-Path), Tucson, AZ

The goal of the Coalition Against Major Diseases (CAMD) is to bring together major pharmaceutical and biotech companies, the U.S. Food and Drug Administration (FDA), the European Medicines Agency (EMEA), the National Institute on Aging (NIA), the National Institute of Neurological Disorders and Stroke (NINDS), and Patient Groups in a collaboration to develop new knowledge that will enhance the industry's ability to develop innovative new therapies. CAMD will focus first on Alzheimer's and Parkinson's diseases and then expand to other areas.

This presentation describes the role and current status of the initial four workgroups that will generate new knowledge resulting in tools to improve the medical product development process. The major deliverables of the coalition are:

- To submit biomarkers to the FDA and EMEA for qualification to accurately diagnose disease, stratify patient populations, and predict patient outcomes.
- To submit quantitative models of disease progression to the FDA and EMEA for qualification that can be used to project the effects of potential diagnostics and treatments, as well as inform the design of clinical trials.
- To develop an integrated database from completed trials in a common Clinical Data Interchange Standards Consortium (CDISC) format usable for research by coalition members and others.

A workgroup has been created to work on each major deliverable. A fourth workgroup was formed to assist in the creation of the dossiers for submission to the FDA and EMEA.

It is not the intent of the coalition to duplicate current efforts already under way in these areas, but instead to leverage existing data and knowledge, create consensus on methods to advance product development, and make the methods available for broad applications. Where appropriate, the resulting applied data and new information will be submitted for FDA review, with the goal to have them qualified, and in all cases, to have them widely available for use in new medical product development.

The coalition is being founded and supported by the Critical Path Institute (C-Path) in collaboration with the Engelberg Center for Health Care Reform at the Brookings Institution. CAMD is a self-governing entity advised by scientists from the FDA, EMEA, and the National Institutes of Health (NIH) and directed by its members, who are pharmaceutical and biotech companies and patient groups committed to advancing the care of patients with neurodegenerative diseases.

#### OpenDiseaseModels.org: An Open Forum for Collaborative Model Building and Evaluation

William R. Gillespie, Marc R. Gastonguay, James A. Rogers, Matthew M. Riggs

Metrum Institute, Tariffville, CT, USA

**Objectives:** The objective of OpenDiseaseModels.org is to provide an open forum for collaborative model building and evaluation, driven by the following principles:

- 1. Development of disease/systems models is an extremely resource-intensive effort.
- 2. Pre-competitive insight and resources shared across companies/institutions will lead to better systems models than could be developed by a single institution.
- 3. Open models, which are transparently developed and publicly vetted, will be more widely accepted and will be better positioned to impact the entire scientific/biomedical/health community.

**Methods:** OpenDiseaseModels.org serves as a home for multiple disease/systems modeling projects. Each individual project is comprised of three participant groups:

The Core Model Development Team is made up of expert modeling and simulation scientists, with prior experience in disease progression or systems biology modeling for the particular biomedical domain of interest. This group serves as the primary developers and maintainers of the model source code and also reviews input from the Advisory Panel and the General Public regarding model revisions and improvements.

The Advisory Panel is comprised of scientists, clinicians, policy makers, and patient advocates with demonstrated expertise or interest in the disease(s) of interest. Their role is to provide guidance to the Core Model Development Team regarding clinical and therapeutic utility, biologic plausibility, and potentially, external research and funding opportunities.

The third group is comprised of contributors from the General Public, including other domain-relevant scientists, clinicians, policy makers, patient advocates, and anyone else with an interest in the modeling project. The role of this group is to impact the model development process by exploring, challenging, and motivating through contributed examples and open discussion.

All participants are allowed download and review model documentation, data and source code, participate in open discussion groups, and contribute new models or data via discussion group uploads.

Similar to open-source software development, the development of open systems/disease models is an iterative development cycle with delivery of key intermediate model milestones, or versions, throughout the course of development. Some important characteristics of OpenDiseaseModel.org development projects are: 1. Models are developed with readily accessible (preferably open-source) modeling tools with model code openly available. Ultimately these models may be translated to a common model language (e.g. an SBML-like language). 2. Full Bayesian modeling methods are emphasized in order to formally include prior information sources in the model development process, and also to facilitate exploration of sensitivity of model-based inferences to parameter (and model) uncertainty. 3. Models are developed using publicly available data, and those data sets are also be openly shared as part of the project. 4. Documentation of modeling efforts, features, improvements, and bug fixes is transparently available within each project. 5. All model code, data sets, and documentation is version-controlled using a modern software development versioning system. 6. Publication of modeling results in peer-reviewed literature must be allowed, and is encouraged, for all development projects. 7. Public review, discussion and extension of models is facilitated via a web-based discussion board. 8. All model code is distributed under the GNU General Public License.

**Results:** To date, three open model development projects have been initiated at OpenDiseaseModels.org. They include a systems biology model for calcium homeostatis and bone resorption, an Alzheimer's Disease progression model based on the ADAS-cog endpoint, and a schizophrenia disease progression model. Additional projects are in development.

**Conclusions:** The feasibility of an open, community-based, disease modeling collaboration has been prototyped with OpenDiseaseModels.org. This paradigm also provides an opportunity for integration with other model sharing initiatives, such as FDA's proprietary data based model-sharing efforts, in that ODM.org could provide a forum to host detailed summary level model evaluation data sets and public discussion forums related to assessing the performance of these models.

#### **FDA Disease Models**

#### Christoffer W Tornoe

U.S. Food and Drug Administration, Silver Spring, MD, USA

**Objectives:** One of the most important and unrecognized issues contributing to drug development and regulatory productivity and quality is the ability to employ prior knowledge to make the best informed decisions.

Initiatives to share clinical data have had little progress in the past and might be a too ambitious initial goal since the data is perceived to be the commercial advantage. At the other end of the spectrum is sharing model parameters which routinely are done through publications and at scientific meetings. However, it is hard to use this type of information since the detail level often is not sufficient to be able to reproduce the results or update it with new data.

**Methods:** As a potential solution that encompasses the above mentioned problems with sharing data and models, we propose that the Pharmacometrics community align and share knowledge through a system that enables acquiring, storing, analyzing, and reporting information through the development of data standards, tools and script libraries, and report templates to maximize the use of prior knowledge.

**Results:** Three examples will be presented to illustrate our experience in creating disease databases and templates, standardized scripts and tools for statistical and graphical analyses, and sharing disease models, i.e.

- Antiviral Information Management System (AIMS): Implementation of relational database structure, data templates and controlled terms to better leverage prior knowledge to better inform dose selection of new hepatitis C therapies [1].
- Thorough QT (TQT) Data Analyses and Reporting Tool: Standardization of TQT data analyses, archiving, and reporting in order to improve productivity, quality, and communication. The TQT tool can also be used as a platform to discuss strengths and limitations of the current methods and collaborate to improve the science [2].
- Non-Small Cell Lung Cancer (NSCLC): Develop quantitative relationship between tumor size and overall survival which allow companies to plug in their drug-specific model components to improve oncology drug development through dose selection optimization and increased trial success [3].

**Conclusion:** The value of quantitative thinking in drug development and regulatory review is increasingly being appreciated. In order to utilize all available information and resources more efficiently,

The development of a disease databases, standardized scripts and tools, and disease model repositories will allow scientists to more efficiently and effectively use prior knowledge and available resources in the future thereby improving the quality and productivity of both drug development and regulatory review.

- [1] Neal, Lauren. The Antiviral Information Management System (AIMS): Leveraging prior knowledge to inform dose selection of new hepatitis C therapies. American Conference on Pharmacometrics, Podium Presentation, 2009.
  [2] Tornoe et al. Creation of an Automated Thorough QT Data Analyses, Repository, and Reporting Tool for Regulatory Review. Manuscript in preparation.
- [3] Wang et al. Elucidation of Relationship Between Tumor Size and Survival in Non-Small-Cell Lung Cancer Patients Can Aid Early Decision Making in Clinical Drug Development. CPT 2009 86(2) 167-174.

#### Dealing with Missing Data in Pharmacometrics Session Chairs: Marc Gastonguay and Jonathan French

#### Introduction to missing data issues in pharmacometrics

#### Jonathan French

Pfizer, Inc., New London, CT, USA

**Objectives:** In this session we will define the standard statistical concepts underlying missing data research (e.g., missing completely at random, missing at random, missing not at random, ignorability) and discuss the missing data models commonly used in the statistics literature (likelihood-based MAR, and pattern-mixture, selection-, and shared parameter models). We will then relate these to models commonly reported in the Pharmacometrics literature, including those proposed by Hu and Sale [1] and Sheiner, Beal and Dunne [2]. Throughout the talk, we will use real-world examples as motivation.

- [1] C. Hu and M.E. Sale. A Joint Model for Nonlinear Longitudinal Data with Informative Dropout. *J. Pharmacokin. Pharmacodynam.* **30:** 83-103 (2003).
- [2] L. B. Sheiner, S. L. Beal, and A. Dunne. Analysis of nonrandomly censored ordered categorical longitudinal data from analgesic trials. *J. Amer. Stats. Assn.* **92:**1235–1255 (1997).

#### When Should We Be Concerned About Nonignorably Missing Data?

#### Daniel F. Heitjan

University of Pennsylvania, Philadelphia, PA, USA

**Objectives:** Statisticians have come to recognize the potential biasing effects of nonignorable missing-data mechanisms. For example, if, say, larger observations are more likely to be missing or censored, then standard estimates such as the sample mean of the observed data (when some subjects are missing) or the Kaplan-Meier curve (when some subjects are censored) are invalid. Methods that attempt to estimate or test the degree of nonignorability are unsatisfactory thanks to conceptual and numerical difficulties associated with nonignorable models. If, however, we can determine that substantial nonignorability would be needed to affect estimates, then standard approaches should be safe to use. The effect of nonignorability would presumably depend on the amount and placement of the missing data. We seek therefore to construct measures of the sensitivity of inferences to the assumption of a nonignorable missing-data mechanism.

**Methods:** I propose to evaluate local sensitivity to nonignorability. [1] The method involves evaluating the effect on key parameter estimates of small departures from an ignorable model. The necessary computations are straightforward and do not involve the estimation of nonignorable models.

**Results:** An example from a cancer clinical trial that is subject to dropout illustrates the method's simplicity, flexibility and value in answering questions that can reasonably be answered. [2]

**Conclusion:** Sensitivity to nonignorability is a meaningful notion that one can readily quantity and compute directly even from complex data structures.

- [1] Troxel, Andrea, Ma, Guoguang and Heitjan, Daniel F. (2004). An index of local sensitivity to nonignorability. *Statistica Sinica* **14**, 1221–1237.
- [2] Ma, Guoguang, Troxel, Andrea B. and Heitjan, Daniel F. (2005). An index of local sensitivity to nonignorable dropout in longitudinal modeling. *Statistics in Medicine* **24**, 2129–2150.

#### The Impact of Missing Data on Model Evaluation

#### Marc R. Gastonguay

Metrum Institute and Metrum Research Group LLC, Tariffville, CT, USA

#### **Objectives:**

Simulation-based model evaluation methods, such as the posterior predictive check and other related methods, have become a standard for assessing the performance of nonlinear-mixed effects models in pharmacometrics. The impact of missing data is, however, often ignored when interpreting model checking results. The objectives of this presentation are:

- 1. To identify situations in pharmacometrics where missing data may impact interpretation of model evaluation methods,
- 2. To suggest methodological solutions for the appropriate implementation of model evaluation under missing data conditions, and
- 3. To illustrate proposed solutions with real-world examples

**Methods:** Examples of simulation-based model evaluation methods in the pharmacometrics literature have been reviewed, with respect to their treatment of missing data. In the majority of cases, the impact of missing data has been ignored, and simulations conducted under complete data assumptions were compared with incomplete observed data. In a small number of cases, the impact of missing data has been acknowledged by either: 1) developing models for the missing data, assuming a missing-at-random (MAR) mechanism, incorporating the models for the missing data mechanism as part of the simulation for model evaluation purposes, and comparing the observed and simulation incomplete-data sets; or 2) implementing single or multiple imputation methods to augment the observed data records and create a complete observed data set, which is then compared with a complete-data simulation.

**Results:** Simulation-based model evaluation methods that did not incorporate the impact of missing data often provided a misleading assessment of model performance. Assuming MAR mechanisms, both the model-based and imputation-based solutions provided a more appropriate assessment of model performance.

**Conclusions:** Implementation of model evaluation methods, without considering the impact of missing data, results in misleading assessments of model performance. Solutions to this problem are relatively straightforward when the missing data mechanism is MAR, but none of the proposed model evaluation methods are valid if the missing data mechanism is MNAR. A formal sensitivity analysis should be conducted to explore the impact of missing data due to MNAR mechanisms.

- 1. Friberg LE, de Greef R, Kerbusch T, Karlsson MO. Modeling and simulation of the time course of asenapine exposure response and dropout patterns in acute schizophrenia. Clin Pharmacol Ther. 2009 Jul;86(1):84-91. Epub 2009 Apr 22.
- 2. Gelman, A. and Van, Mechelen I. and Verbeke, G. and Heitjan, D. F. and Meulders, M. Multiple imputation for model checking: completed-data plots with missing and latent data. Biometrics, 2005, 61(1): 74-85
- 3. Gelman, A. and Carlin, J. B. and Stern, H. S. and Rubin, D. B. Model checking and sensitivity analysis Bayesian data analysis. Chapman & Hall, New York, 1995.
- 4. Karlsson MO & Holford N. A Tutorial on Visual Predictive Checks. PAGE 17 (2008) Abstr 1434 [www.page-meeting.org/?abstract=1434]

### Where will the pharmacometricians of the future come from? Session Chairs: Bernd Meibohm and Hartmut Derendorf

Hartmut Derendorf(1), Bernd Meibohm(2), Sandra Allerheiligen(3), David Cadieu(4), Amita Joshi(5), Richard Lalonde(6)

(1) University of Florida, Gainesville, FL; (2) University of Tennessee Health Science Center, Memphis, TN; (3) Eli Lilly & Co., Indianapolis, IN; (4) KDC Group, Inc., Lawrenceville, NJ; (5) Genentech Inc., South San Francisco, CA; (6) Pfizer Inc., New London, CT

The discipline of pharmacometrics has evolved over decades from an often ad-hoc collection of straightforward analytical methods to a sophisticated, rigorous and multi-pronged approach for the descriptive and mechanistic interpretation of exposure-response relationships. Its impact has also increased in all facets of drug development, since the cluster of skills that define pharmacometrics provides powerful tools to maximize the information flow between for example preclinical and clinical development. However, the successful use of pharmacometrics requires considerable technical expertise, both with highly developed computational and algorithmic concepts (which include advanced statistical techniques and numerical simulations), and with the biological mechanisms of physiology, pathophysiology and action of drugs and biologics, which must be summarized in relatively simple mathematical-statistical expressions amenable to computer solution.

The pharmaceutical industry is currently facing a shortage of this kind of eclectic professional, caused at least in part by a "perfect storm" of circumstances in academic and industrial quarters. These include a reorientation of pharmaceutical sciences departments across the country's universities during the last decade to a strong emphasis on molecular biological sciences and the consequent fading of the discipline of pharmacokinetics and clinical pharmacology. One of the main reasons for this reorientation on basic sciences is the limited availability of federal funding opportunities in pharmacokinetics and clinical pharmacology. Private and public institutions have started to look at nontraditional disciplines, such as biomedical engineering, to fill the gap.

The session will initiate a discussion about the discrepancy between the need for pharmacometricians in industry, research institutes and regulatory agencies and the number of scientists trained in this area by academic programs in the U.S. and beyond. The panel discussion will highlight the problem and its causes, and will discuss potential solutions to overcome this shortage of pharmacometricians in the mid- and long-term.

#### Development and utilization of disease models Session Chairs: Mats Karlsson and Marc Pfister

#### Mechanism-based disease model for SGLT2 inhibitors in Type 2 Diabetes Mellitus (T2DM) Subjects

Chee Ng, Liping Zhang, Marc Pfister

Discovery Medicine and Clinical Pharmacology, Bristol-Myers Squibb, Princeton, NJ

**Background/Aim:** A novel approach to reducing serum glucose in T2DM is by inhibition of glucose reabsorption in the kidney via sodium-glucose co-transporter (SGLTs)-mediated pathway. Dapagliflozin (DAPA) is the first in a new class of selective oral SGLT2 inhibitors currently in development for the treatment of T2DM. The objective of this study is to develop a mechanism-based disease model that characterizes plasma-urine glucose relationships in placebo- and DAPA-treated T2DM patients in clinical studies.

**Method:** A two-compartment linear exposure model with Weibull reabsorption was used to describe DAPA concentration-time profiles. The proposed mechanism-based disease model consisted of (i) a two-compartment linear model with first-order absorption, endogenous production and elimination of serum glucose, (ii) a kidney compartment with glucose filtered by glomerulli and reabsorbed via SGLT-mediated pathway, (iii) a structural component to account for the circadian rhythm of endogenous glucose production, and (iv) an inhibitory Emax model to characterize the drug effect on SGLT-mediated glucose reabsorption. Hybrid iterative-two-stages (ITS) and Monte-Carlo Parametric Expectation Maximization (MCPEM) estimation methods implemented in a distributive/parallel computing platform were used to develop a final glucose plasma-urine model and obtain population parameter estimates.

**Results/Conclusions:** The final urine-plasma glucose model was able to describe serum and urine glucose profiles and showed good ability to simulate data. Such a mechanism-based disease model can be utilized (i) to better understand the role of SGLT-mediated reabsorption pathway in the regulation of serum glucose, (ii) to characterize the theoretical maximum effect of SLGT2 inhibitors in T2DM, and (iii) to estimate important physiological parameters (e.g., individual maximum glucose reabsorption capacity) using routine clinical data.

- Silber HE, Jauslin PM, Frey N, Gieschke R, Simonsson USH, Karlsson MO. An integrated model for glucose and insulin regulation in healthy volunteers and Type 2 diabetic patients following intravenous glucose provocations. J Clin Pharmacol 2007; 47:1159-71
- 2. Radziuk K, Pye S. Diurnal rhythm in endogenous glucose production is a major contributor to fasting hyperglycaemia in type 2 diabetes. Suprachiasmatic deficit or limit cycle behaviour? Diabetologia 2006;49:1619-28

#### Empirical Disease Progression Model for Ranibizumab in Age-Related Macular Degeneration

Satyendra Suryawanshi, PhD (1), Peter Kuebler, PharmD (2), Nitin Mehrotra, PhD (1), Bernd Meibohm, PhD, FCP (1)

(1) Departments of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA; (2) Genentech Inc., South San Francisco, CA, USA.

**Objectives:** To develop an empirical disease progression model that describes the progressive loss of visual acuity in age-related macular degeneration (AMD) and to quantify the time course of its modulation by ranibizumab, a humanized antibody fragment against vascular endothelial growth factor-A (VEGF-A).

**Methods:** Time courses of visual acuity assessed with the Early Treatment Diabetic Retinopathy Study (ETDRS) charts at 2 m test distance were obtained from 716 subjects enrolled in MARINA and 184 subjects enrolled in PIER, two phase III multicenter, randomized, double-masked, sham-controlled clinical trials. Subjects were randomized at a 1:1:1 ratio to receive 0.5 mg ranibizumab, 0.3 mg ranibizumab or a sham injection. To allow for a combined analysis of the two studies, only data of observation periods with the same dosing frequency (once monthly) were considered, i.e. the first 3 months of the PIER data and the complete 2-year MARINA data. Decline in visual acuity in AMD was modeled as a negative monoexponential process that asymptotically approaches a stable value. The dose-dependent effect of ranibizumab on visual acuity was modeled as the combination of two components, a symptomatic effect (reversible gain in letters) and a protective effect (reduction in disease progression). The model was developed using NONMEM VI with FOCE.

**Results:** The model estimated visual acuity at baseline ( $\sim$ 54 letters) decreased asymptotically with a first-order disease progression rate ( $K_{pro}$ ) of 0.0014 day<sup>-1</sup>. The model-estimated high between-subject variability of 179% for  $K_{pro}$  is supported by the observed data. The protective effect of ranibizumab after once monthly administration was comparable for the 0.5 mg and the 0.3 mg dose level (69.2% vs. 67.9% reduction in  $K_{pro}$  or 8.4 letters vs. 8.2 letters saving that has resulted from slowing the progression over a two-year period). Similarly, the symptomatic effect (12.7 (95%CI 9.85-19.77) letters for '0.5 mg once monthly' dose vs. 12.4 (95%CI 9.35-19.5) letters for '0.3 mg once monthly' dose) was indistinguishable between doses. A visual predictive check demonstrated agreement for central tendencies and 90% CI of observed data and 300 simulated data sets.

**Conclusions:** The empirical disease progression model characterized the change in visual acuity over time and allowed to determine the treatment effect of ranibizumab after once monthly doses. The results further support the symptomatic and protective benefit of ranibizumab in AMD and provide model-based evidence for a change in the rate of disease progression under ranibizumab therapy.

### The Antiviral Information Management System (AIMS): Leveraging prior knowledge to inform dose selection of new hepatitis C therapies

<u>Lauren Neal</u> (1), Debbie Birnkrant (2), Ying Chen (1), Joga Gobburu (1), Peter Lee (1), Jules O'Rear (2), Jeff Murray (2), Kellie Reynolds (1), Guoxing Soon (3) and Pravin Jadhav (1)

(1) Office of Clinical Pharmacology, U.S. Food and Drug Administration; (2) Division of AntiViral Drug Products (DAVP), U.S. Food and Drug Administration; (3) Office of Biostatistics, U.S. Food and Drug Administration

**Objectives:** Dose selection and informative trial designs are key elements in the development of successful anti-Hepatitis C virus (HCV) treatments. With more than two dozen new HCV molecules in development, drug developers have the opportunity to achieve increased cure rates and improve tolerability. The Antiviral Information Management System (AIMS) proposes a framework to improve dose selection through (1) a structured database to archive HCV data in a queriable manner, and (2) an automated analysis tool to inform trial design elements. Successful implementation of the AIMS initiative will advance our understanding of viral RNA kinetics and provide quantitative solutions to trial design challenges. The initiative is well aligned with FDA's Critical Path Initiative in fulfilling our obligation to improve the health of the HCV patient population.

**Methods:** As a part of the AIMS initiative, industry and FDA scientists will work together to make crucial decisions about dose selection. Optimized dose finding for novel HCV agents will minimize the risks of toxicity due to too high a dose while limiting treatment failure and development of resistance due to too low a dose. With the increasingly rapid pace of development in this area, the use of prior knowledge and quantitative analysis are especially important for informing trial design. The AIMS initiative supports early discussion about dosing between industry and FDA, ideally no later than the End of Phase 2A. The AIMS tool will use a combination of pharmacokinetic and viral RNA dynamics modeling to estimate system and virus parameters and simulate clinical trials in order to answer specific trial design questions. For example, the tool will help identify an appropriate range of doses for testing in the proposed trial and provide quantitative support for dosing decisions. The tool will help FDA and industry choose doses to maximize virologic response rates while considering noncompliance, tolerability, dropouts etc.

**Results:** The main goal of AIMS is to improve the efficiency of the anti-HCV drug development process by using prior knowledge and quantitative methods for dose selection. Collaboration between industry and FDA scientists is essential for successful implementation and, therefore, efficient drug development. First, early communication will ensure earlier decisions about dosing. Second, the standardized data template will ensure efficient archival of the data submitted by industry sponsors in the AIMS database for meta-analyses of individual or classes of drugs. Third, the analysis tool will allow FDA and industry scientists to make dosing decisions through quantitative methods.

**Conclusions:** The AIMS initiative is the first FDA knowledge management initiative used to proactively archive disease data and apply trial simulations to inform dose selection. Although proprietary data will remain confidential, models and quantitative analysis techniques will be shared to encourage collaboration among FDA, industry and academic scientists to guide the HCV drug development process by addressing therapeutic challenges at each step. The implementation of AIMS will promote efficient and successful development and approval of emerging anti-HCV treatments to improve the health of the HCV patient population.

**Acknowledgements**: We would like to acknowledge important contributions of the scientists from Clinical Pharmacology (Shashi Amur, Vikram Arya, Stanley Au, John Lazor, Fang Li, Shirley Lu, Sarah Robertson, Jenny Zheng); Antiviral Drugs (Russ Fleisher, Linda Lewis, Lalji Mishra, Lisa Naeger, Scott Proestel, Kim Struble) and Biostatistics (Fraser Smith, Susan Zhou) divisions of the FDA.

#### A Modeling Framework to Simulate Motesanib Efficacy in Thyroid Cancer

Rene Bruno (1), Laurent Claret (1), Jian-Feng Lu (2), Yu-Nien Sun (2), Daniel E. Stepan (2),

(1) Pharsight Corporation, Marseille, France; (2) Amgen Inc., Thousand Oaks, CA, USA

**Objectives:** Motesanib is a highly selective, oral inhibitor of VEGF receptors 1, 2, and 3; PDGF receptor, and Kit that has antiangiogenic and direct antitumor activity. A modeling framework that simulates clinical endpoints, including objective response rate (ORR) per Response Evaluation Criteria in Solid Tumors (RECIST) and progression-free survival (PFS), was developed to support clinical development of motesanib. This study evaluated the framework using results from a study of motesanib in thyroid cancer.

**Methods:** Models for tumor growth inhibition [1] with drug effect driven by area under the motesanib concentration versus time curve (AUC) (as predicted by a population pharmacokinetic model), overall survival, and probability and duration of dose reductions were developed based on data from 93 patients with differentiated thyroid cancer (DTC) [2] and 91 patients with medullary thyroid cancer [3] enrolled in a phase 2 study who received motesanib monotherapy (125 mg once daily [QD]). The full simulation framework was assessed in predicting dose intensity (starting dose of 125 mg QD), tumor size over time, ORR, and PFS. Dose-response simulations were performed in DTC patients. The model for prediction of survival times followed a Weibull distribution with ECOG performance status, baseline tumor size, and change in tumor size from baseline at week 7 as predictors. An ordered categorical model combined with a Weibull model was used to describe the relationship between the probability and duration of dose reductions and AUC.

**Results:** Time to event Weibull models correctly predicted median daily exposure intensities up to week 24 with dose reductions and dose interruptions. The predicted ORR in DTC patients was 15.0% (95% prediction interval [PI], 7.5%—23.7%) compared with the observed ORR of 14.0%. Predicted median PFS was 40 weeks (95% PI, 32–49 weeks) compared with the observed median PFS of 40 weeks. Dose-response simulations confirmed the appropriateness of 125-mg QD dosing in DTC: the modeling framework predicted that no clinically relevant improvement in PFS would be obtained by dose intensification.

**Conclusion:** This modeling framework (dose reduction/tumor growth inhibition/survival) will be an important tool to simulate clinical response and support clinical development decisions. Further evaluation of the model using additional datasets will be required.

- [1] Claret L et al. J Clin Oncol 2006;24(18s):abstract 6025.
- [2] Sherman SI et al. N Engl J Med 2008;359:31-42.
- [3] Schlumberger M et al. Horm Res 2007;68(suppl 3):28-9.

### New Directions in Cardiovascular Modeling: From Biomarkers to Clinical Outcomes and Comparative Effectiveness

Session Chairs: Christine Garnett and Richard Lalonde

#### The RAAS Hypertension PhysioLab platform: A Systems Modeling Approach to Hypertension.

Ramprasad Ramakrishna (1), Anna Georgieva(1), Ramesh Sarangapani(1), Arthur Lo(2), Jennifer Beh(2), Sergey Ermakov(2), Saroja Ramanujan (2), Manoj Rodrigo(2), Stuart Friedman(2), Gabriel Helmlinger (1), Deborah Keefe (1), Alan Charney (1), William P. Dole (1), David Feldman (1), Hector De Leon(2).

(1) Novartis Pharmaceuticals, East Hanover, NJ, USA. (2) Entelos Inc., Foster City, CA, USA.

The RAAS Hypertension PhysioLab model presented here integrates biological, pathological, and therapeutic knowledge around the renin angiotensin aldosterone system (RAAS) and the effects of pharmacological intervention in this pathway on the progress of hypertension-related kidney disease. The general model comprises a series of modules including blood pressure (BP) regulation, renal function/dysfunction (glomerular filtration rate [GFR] and albuminuria), and systemic and intrarenal RAAS. Appropriate calibration and sensitivity analysis to refine the models in an iterative fashion will be discussed.

Virtual patients (VPs) and populations (Vpop) representing the range of physiology of specific phenotypes of interest are generated by constraining a set of response type (RT) criteria, a collection of feasible clinical measurements and values for a given phenotype. The mechanistic axes utilized to generate diversity of hypertensive VPs included: proximal and distal nephron sodium reabsorption, total peripheral resistance, preglomerular resistance, and hydrostatic glomerular conductance. A stepwise exploration of these mechanistic axes generated different combination sets, categorized as candidate VPs. These were further filtered to meet the criteria for phenotypic feasibility defined by the appropriate RTs. The effects of drugs, biologics or lifestyle modifications can then be tested (stimulus response tests, SRTs) in single VPs, cohorts and entire Vpops and examples of this approach will be presented.

The mechanistic basis of the RAAS Physiolab and the complementary VPs and Vpops approach provide a unique means of exploring the effect of RAAS and non-RAAS blockers on long-term hypertension progression.

### Conceptual Framework for Evaluating the CV Risk Manifested By Drug induced Elevations in Systolic Blood Pressure

#### Rajanikanth Madabushi

U.S. Food and Drug Administration, Silver Spring, MD, USA

**Objectives:** Decades of research has established blood pressure as one of the strongest independent risk factors for cardiovascular morbidity and mortality. Subsequently, blood pressure reduction has become one of the most, if not the most, aggressively targeted goals in preventive medicine. Analyses of observational data have demonstrated that even small reductions in blood pressure, on a population level, could have a substantial public health impact on the prevalence of cardiovascular disease. Conversely, such data can also be used to estimate the effect that small increases in blood pressure may have on a population. Our goal is to leverage the quantitative relationship between blood pressure and the risk of cardiovascular disease for understanding the potential of drugs for chronic use to elevate the blood pressure and eventually the cardiovascular risk. We believe that this understanding will eventually lead to designing of trials that will allow for characterization of cardiovascular risk due to unintended elevation in blood pressure.

**Methods:** A survey of the literature was performed to summarize and identify the quantitative relationships characterizing the relationship between changes in systolic blood pressure and cardiovascular risk in epidemiological studies. Simulations were preformed utilizing this relationship to understand the effect of small unintended elevations in systolic blood pressure and the cardiovascular risk. The NHANES database and data from internal submission were used to create patient population. A bootstrap approach was utilized to calculate baseline cardiovascular disease (CVD) risk. Small elevations in systolic blood pressure in an additive fashion were simulated for three different scenarios (normal population, high risk population and a population from a regulatory submission) and the resulting CVD risk was calculated and plotted.

**Results:** A gender specific multivariable risk function that predicts risk of developing CVD and of its constituents (coronary heart disease, stroke, heart failure and intermittent claudication) developed by D'Agostino etal<sup>1</sup> was adopted to perform the simulations. The model was used to simulate the probability of 10-year survival which was predicted on risk factors such as age, total cholesterol, HDL, systolic blood pressure, treatment for hypertension, smoking status and diabetes. Increase in blood pressure resulted in increase in CVD risk in all the three scenarios. Elevations as small as 2 mm Hg result in 3 additional CVD events per every 1000 males over a 10 year period. The tolerability to the elevation in systolic blood pressure depends upon the expected benefit. Based on the simulations, a conceptual framework of a study design intended to capture small elevation in blood pressure and the corresponding CV risk was developed.

**Conclusions:** Small elevations in systolic blood pressure result in increased CVD risk. They should be clearly understood for chronically used drugs in order to better characterize the benefit-risk. The current work explores the utility of a quantitative relationship to understand the impact of small elevation in blood pressure. Future work will further evaluate other quantitative relationships with an ultimate aim to design focused trials for detecting drug effects on blood pressure and how they can be factored into the benefit-risk discussion.

#### **References:**

[1] General Cardiovascular Risk Profile for Use in Primary Care: The Framingham Heart Study – D'Agostino etal. Circulation 2008;117:743-753

#### Quantitative Approaches for Comparative Effectiveness and Pharmacoeconomics

Jens Grueger, PhD

Pfizer Inc. New York

Successfully developing and commercializing a new drug is increasingly difficult, lengthy and costly: in addition to concerns over safety, new customers (payers) are requesting additional information from manufacturers including comparative effectiveness and pharmacoeconomics. Particularly in disease areas where several classes of effective medicines have been available for many years and now often from multiple sources at generic prices, the criteria for market access for a new product are high. Not all of these criteria and expectations can be fulfilled in the traditional clinical development paradigm based on randomized double-blind clinical trials, optimized towards demonstrating efficacy in homogeneous well characterized patient populations. In this presentation I will discuss new quantitative approaches for addressing these issues, including the use of Bayesian methods, adaptive trial design and trial simulation for comparative effectiveness and pharmacoeconomics during clinical development. In addition, there is increasing recognition of the value of post-launch real world data collection to validate hypotheses that could not be investigated during clinical development.

Communication through Graphics: Looking at Data, Models, and Results

Session Chair: Andreas Krause

#### **Exploratory Data Visualisation: Taming the Technology**

Richard Pugh (1) and Niclas Jonsson (2)

(1) Mango Solutions, Chippenham, UK; (2) Exprimo, Upssala, Sweden

**Objectives:** The primary objective is to show a range of novel methods to visualise data in order to drive model selection, with particular emphasis on the necessary interactive nature of this process. Having presented a range of graphical methods, a secondary objective will be to show how these tools can be made available to all modellers, ensuring technology is not a barrier to advanced visual analysis.

**Methods:** Initially, the presenter will use the R language in order to generate the more common graphical methods for data evaluation. The presenter will then extend this to encompass more complex, innovative and interactive graphics that will lead to more effective model selection. This first section will establish that, with appropriate knowledge of such technologies, effective insights can be made that aid the modelling process.

The first section of the presentation will present interesting graphical methods using the advanced use of a technology. This, in itself, presents an issue: are these graphical tools therefore available only to those with sufficient skill in a particular software?

The second section will address an issue which is common to this type of presentation: how modellers who need the ability to create novel outputs can have quick, yet consistent, access to these tools. This will be illustrated by experienced gained from working with M&S groups who have, themselves, aimed to resolve this issue.

**Results:** Graphical methods will be presented to drive model selection, with a serious of suggested processes and technologies that can ensure these methods can be widely distributed within a M&S department.

**Conclusions:** Complex software can be readily embedded within a M&S groups processes and systems, in order to provide a platform for model selection using both standard and novel graphical tools.

#### Visualizing PK/PD Models using Berkeley Madonna

#### Andreas Krause

Actelion Pharmaceuticals, 4123 Allschwil, Switzerland.

**Objectives:** Present and discuss methods for effective visualization and communication of models and modeling results to technical and non-technical audiences. Assess the quantitative contributions of model components such as placebo effect, circadian rhythm, and tolerance as well as the individual covariates towards the change in pharmacokinetic and pharmacodynamic parameters.

Central aim: communicate an intuition for a model and its components to facilitate team discussions of modeling results.

Methods: Purely graphical methods, largely using Berkeley Madonna and its interactive techniques.

The presentation focuses on effective visualization and communication of PK/PD models to a wider audience that might include medical doctors, drug safety experts, pharmacologists, and managers.

Starting from a population PK model with covariates we illustrate graphically the relevance of covariates on the concentration-time course.

The PK model is extended to the PK/PD model that includes components such as a placebo effect, circadian rhythm, and tolerance. The model components are assessed graphically to help understanding of the relevance of the different components involved in the model.

In a next step, demographic and baseline covariates are analyzed for their relevance towards efficacy and safety parameters to arrive at dose-response profiles. The approach naturally leads to interactive exploration of alternative doses and dosing regimens using graphical tools.

Even simulations with particular setups can be conducted interactively. We will show an example of simulations that are run by moving a slider to select particular configurations.

We have been very successful in using Berkeley Madonna as the communication tool, and the presentation aims at highlighting the efficiency of interactive graphical methods to facilitate communication about models and thus compound characteristics. The clinical team

Alongside, we will show a few details of the underlying Berkeley Madonna code to enable the audience to start using the tool easily.

**Results:** The discussion of model and thus drug characteristics led to considerations of alternative drug administration. Studies are currently ongoing to substantiate the evidence of the model-predicted effects.

Conclusions: Using graphics enables the modeler to assess model characteristics easily, for example judgment about the adequacy of alternative structural models. Once the model is fully developed, graphics substantially facilitate the communication about the model to a non-technical audience, and it helps the modeler establish the relevance of the results with clinical teams. Interactive intuitive setups like the scripts created by Berkeley Madonna can even be given to clinical team members for their own explorations of the model. The approach leads to better questions by the clinical team members and appreciation of model-based approaches.

#### **References:**

[1] Berkeley Madonna home page: http://www.berkeleymadonna.com/

#### Simulation Graphics to Enable Model-Based Decision Making

#### Kevin Dykstra

Pharsight, Strategic Consulting Services, St. Louis, MO, USA

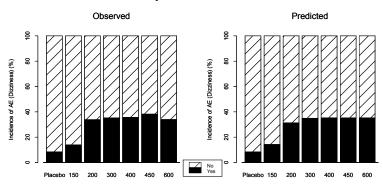
**Objectives:** Describe graphical presentation techniques that enhance decision making on the basis of MBDD simulation methods

Methods: Once a drug and disease model has been constructed and appropriately qualified, it is reasonable to ask "Well, so what?" While characterization of the data is frequently very useful in itself, drug development teams use models to best effect when they employ simulation to explore conditions (e.g., doses, population covariates, alternative formulations) that have not been directly studied, or to identify advantageous development scenarios. The impact of excellent simulation work can be greatly enhanced by well-executed visualization of the main results that clearly communicate findings, insights and clarify the inherent benefit-risk tradeoffs associated with drug development. A "killer graph" is the visual that displays the essence of the key insights and brings the development decisions impacted by the modeling into sharp focus for the entire clinical project team and other critical stakeholders, including senior management and regulatory authorities, who will review the work. We will discuss different types of simulations, visualizations for decisions based on clinical trial simulation vs. population simulations, graphics to aid decisions made on the basis of single vs. multiple endpoints, visual "decomposition" of disease progression-placebo effect-treatment effect, ways of enhancing the presentation of tables, and how complex decision criteria can be addressed in a compact and informative fashion.

Conclusions: Effective use of graphs and other visualization techniques and tools can significantly enhance the communication of complex modeling and simulation results for multi-disciplinary drug development experts. and decision-makers.

### **Event Driven/Non-continuous Data Models Session Chairs: Raymond Miller and Celine Dartois Sarr**

### Exposure-Response Analysis for Spontaneously Reported Dizziness in Pregabalin Treated Patients with Generalized Anxiety Disorder.


Kaori Ito, Matt Hutmacher, Jing Liu, Ruolun Qiu, Bill Frame, Raymond Miller

Pfizer Global Research and Development (New London, CT, Ann Arbor, MI)

**Objectives:** To describe the pregabalin exposure-adverse event (dizziness) relationship in patients with Generalized Anxiety Disorder (GAD).

**Methods:** Separate models were developed for the incidence of adverse event and for the conditional severity (0=none, 1=mild, 2=moderate, 3=severe) of adverse event given that an adverse event has occurred in 6 clinical studies in patients with GAD. The incidence component was modeled using a nonlinear logistic regression model. The conditional severity component was modeled as an ordered categorical variable with a proportional odds model. The exposure response relationship was evaluated as or linear or Emax relationship. To describe the time-course of severity, time-dependent effect (placebo effect, exposure effect, and tolerance effect) were also included. A Markov element was introduced to account for the correlation between adjacent observations.

**Results:** The dataset prepared for the 6 studies consisted of 47218 observations collected in 1630 patients. For the incidence model, a sigmoid Emax model best describes the dose-AE response relationship. Figure 1 shows the mean observed and predicted incidence by dose, including a summary of observed and predicted values with 95 % CI obtained from a non parametric bootstrap. For conditional severity, the model that best described the data was an Emax model with placebo time-course effect and a component that allows for an exponential attenuation of the AE severity. To account for the correlation between adjacent observations a Markov element was added to the model to obtain estimates of the cumulative probabilities of the AE's score given the preceding observation. Observed and predicted conditional probability plots with the Markov model are presented in Figure 2. These plots demonstrate that model fit is dramatically improved by incorporating the Markov element. To evaluate the predictive properties of the model, a posterior predictive check was performed. One hundred data sets were simulated from the final conditional severity model with and without the Markov element and the number of transitions between each possible transition were calculated. The numbers of observed transitions for all combinations were contained within the predictive check distributions from the Markov model, while the number of transitions were extremely overestimated or underestimated without the Markov element.



| Daily Dose |          |                                |
|------------|----------|--------------------------------|
| (mg/day)   | Observed | Predicted<br>(Mean and 95%CI*) |
| Placebo    | 8.5      | 8.2 (5.8-10.9)                 |
| 150        | 13.8     | 14.2 (9.6-19.1)                |
| 200        | 33.8     | 31.3 (22.7-37.3)               |
| 300        | 35.2     | 35.0 (31.7-38.2)               |
| 400        | 35.7     | 35.2 (32.9-38.5)               |
| 450        | 38.2     | 35.3 (32.9-38.7)               |
| 600        | 33.8     | 35.3 (33.0-38.7)               |

<sup>\*</sup> obtained from non-parametric bootstrap (n=1000)

Figure 1. Mean Observed and Predicted Incidence of Dizziness

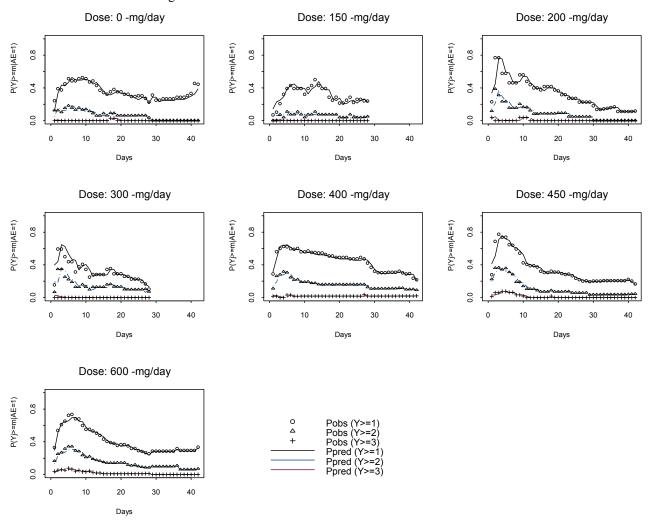



Figure 2. Observed and Predicted Conditional Probabilities for Dizziness by Dose (Markov)

**Conclusions:** The probability of experiencing dizziness during any day increases with pregabalin daily dose. The predicted mean incidence of dizziness was around 35 % at daily dose of 200 mg/day or greater, which was at least 2 fold higher compared to those at daily doses <150 mg/day. The most frequently reported severity was mild to moderate. The risk of mild or moderate dizziness increases up to 25 % within 1 week, but declines to around 7 % over 3 to 4 weeks. The proportional odds model including a time course of appearance and disappearance of adverse event could adequately describe the time-course of probability of dizziness. Incorporating a transition model including Markov elements improved the model fit and greatly improved the predictability of the time-course of probability of dizziness.

### Impact of Dosing Regimens on Dropout Across Pregabalin Trials in the Treatment of Generalized Anxiety Disorder

#### Bojan Lalovic

Pfizer Global Research and Development (Groton, CT, Ann Arbor, MI)

Dropout represents an important clinical trial endpoint, which can be analyzed using time to event models which incorporate daily dosing (titrations) or other time varying information. Dropout has been historically mitigated based only on subjective and empirical clinical judgment. This presentation outlines a model-based strategy to predict prospective dropout based on a dose-adverse event-dropout model<sup>1-2</sup>. This dropout analysis is based on data from pregabalin clinical trials, which assessed the treatment of generalized anxiety disorder (GAD).

Dizziness was the predominant adverse events (AEs) reported representing a major determinant of study withdrawal (dropout) across the pregabalin GAD trials. Adverse-event incidence was modeled as a time-to event process, allowing incorporation of daily dosing (titrations) as a time-varying covariate. Conditional severity of adverse events was described as an ordered categorical variable with proportional odds accounting for both the time-course of effect and correlation between adjacent observations<sup>3-4</sup>.

Subsequently, to model adverse event-based dropout, parametric, discrete-time, hazard models were fitted using dizziness severity as a time-varying covariate. A log-linear hazard model adequately described the decreasing dropout hazard over time for individuals with severe and moderate dizziness. Hazard was approximately constant for individuals reporting no or mild dizziness. Predictions of dropout were evaluated against the nonparametric (Kaplan Meier) estimates as a predictive check and data from an independent trial. Prospective simulations highlight the utility of this approach in examining dropout based on untested titration scenarios for future GAD trials.

- [1] Impact of Dosing Regimens on Dropout Across Pregabalin Trials in the Treatment of Generalized Anxiety Disorder: Model Refinements and External Validation. Lalovic B, Hutmacher MM, Frame B, Ito K, Miller R. Poster Presentation, PAGE 2009.
- [2] Modeling Dropout from Longitudinal Adverse Event Data: Selecting Optimal Titration Regimens. Lalovic B, Hutmacher MM, Frame B, Ito K, Miller R. Poster Presentation, PAGE 2007.
- [3] A two-part mixture model for longitudinal adverse event severity data. Kowalski KG, McFadyen L, Hutmacher MM, Frame B and Miller R. J Pharmacokinet Pharmacodyn. 2003 Oct ;30 (5):315-36.
- [4] Exposure-response analysis for spontaneously reported dizziness in pregabalin-treated patient with generalized anxiety disorder. Ito K, Hutmacher MM, Liu J, Qui R, Frame B, Miller R. Clin Pharmacol Ther. 2008 Jul;84(1):127-35. Epub 2008 Feb 6.

## Apnea of prematurity: A mixed effects modeling approach to disease resolution and pharmacologic intervention modeling

#### CJ Godfrey

Anoixis Corporation, Natick, MA

The time course of resolution of apnea of prematurity and the pharmacodynamics (PD) of theophylline were investigated in a prospective and retrospective study of 97 premature neonates (postnatal age, 0-18.3 weeks; gestational age, 24-33 weeks; daily body weight, 0.4-3.5 kg). The data were analyzed with nonlinear mixed effects models.

The daily frequency of apneic episodes was modeled according to an overdispersed Poisson distribution with a lognormal distribution of interpatient means. The maturational course of daily episode counts was best described by a biexponential function of postnatal age and was influenced by gestational age and comorbidity of hyaline membrane disease. An inhibitory maximum effect model was used to describe the reduction of apneic episode frequency by theophylline.  $I_{max}$  and  $IC_{50}$  were 58% and 4.3 µg/mL, respectively.

#### Estimation of Mixed Hidden Markov Models with SAEM. Application to daily seizures data.

Marc Lavielle (1,5), Maud Delattre (1), Radojka Savic (2), Raymond Miller (3), Mats O. Karlsson (4)

(1) Department of Mathematics; University of Paris-Sud; Orsay; France; (2) INSERM U738 and University Denis Diderot – Paris 7, Paris, France; (3) Pfizer Global Research and Development, USA; (4) Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden; (5) INRIA Saclay Ile-de-France; France

**Background**: Markov elements, which allow the likelihood of a given future state to be dependent on its present state, are often introduced in categorical and count data models to handle dependency of observations. However, the underlying state variable may not always been known. When there is no data available on a previous state, a hidden Markov model (HMM) can be utilized which still treats system as a Markov process, but the parameters of the model are assessed via some other observed variable influenced by this "hidden state". HMM has a finite set of states. Transitions among the states are governed by a set of probabilities called transition probabilities. In a particular state, an outcome can be generated, according to the associated probability distribution. The state is not directly visible.

This methodology has been utilized in other scientific areas; however it has never been extended to a mixed HMM, and therefore never applied within population analysis framework.

**Objectives:** To develop, evaluate and apply a new methodology for the estimation of Mixed Hidden Markov Models.

**Methods:** The Baum-Welch algorithm is a well-known EM-type algorithm [2]. It can compute maximum likelihood estimates for the parameters (transition and conditional probabilities) of an individual HMM, when given only emissions as training data. We propose the following methodology: i) the SAEM algorithm is combined with the Baum-Welch algorithm for estimating the population parameters of the model, ii) for each subject, the individual parameters are estimated using the Maximum A Posteriori (MAP) approach, iii) for each subject the most likely sequence of hidden states is computed with the Viterbi algorithm [2].

The performance of the HMM was evaluated using Monte Carlo studies. Further, the novel methodology was applied for modelling of epilepsy data, expressed as a daily seizure counts. The pronounced overdispersion phenomenon and a characteristic transition matrix of this data [1] were modelled using HMM where periods of low and high epileptic activity were treated as hidden states.

All analyses were performed using MONOLIX with additional Matlab scripts.

**Results:** The Mixed Hidden Markov Model methodology has successfully been developed using the SAEM algorithm. Monte Carlo studies indicated good performances of the proposed methodology (negligible bias, small RMSE, accurate estimation of parameter SE).

Daily seizures count data were successfully described using HMM. The model which consists of a mixture of two Poisson distributions dependent on underlying hidden state, described the overdispersion phenomenon, cumulative marginal distribution and a transition matrix of seizure counts well. Therefore, this novel approach offered further improvements compared to current state-of-the art methodologies [1].

**Conclusions:** The novel Mixed Hidden Markov Model methodology has successfully been developed combining the SAEM and the Baum-Welch algorithms. The SAEM appeared to be powerful and fast algorithm for estimating the parameters of a mixed HMM. The first results obtained with Monte Carlo simulations and using a real data example are extremely encouraging.

- [1] Trocóniz I. F., Plan E., Miller R., Karlsson M.O., Modelling Overdispersion and Markovian Features in Count Data *ACOP Meeting* (2008).
- [2] Rabiner L. R., A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition, *Proceedings of the IEEE*, vol 77 (1989).
- [3] Kuhn E., Lavielle M. Maximum likelihood estimation in nonlinear mixed effects models. *Computational Statistics and Data Analysis*, vol 49, 1020-1038 (2005).
- [4] http://software.monolix.org/

#### Who Wants to Be the First to Dose this Drug in Children? Approaches to Use Knowledge to

Inform Dosing Choices Session Chair: Steven Kern

### The Design and Analysis of Informative Pediatric Clinical Pharmacology Trials Based on Integrating Modeling and Simulation with Available Prior Knowledge

Jeffrey S. Barrett, PhD, FCP

(1) Division of Clinical Pharmacology & Therapeutics, The Children's Hospital of Philadelphia; Pediatrics Department, University of Pennsylvania Medical School, Philadelphia, PA, USA

**Objectives:** To review a process and procedures for incorporating prior knowledge into the design and subsequent analysis of pediatric clinical pharmacology trials with consideration for the disparity and uncertainty of the priors and variety of methodologies suited to the objectives of the trials.

**Methods:** A variety of pharmacometric methodologies including PBPK, Pop-PK, Monte Carlo simulation, etc and software solutions will be discussed in the context of available data. Data are hierarchical with respect to the drug development stage within which they are typically generated (e.g., structure → in vitro data → preclinical in vivo → adult → pediatric). Approaches involving allometric scaling, developmental and maturational functions on compartmental vs PBPK models are compared with prototypical examples including midazolam, esmolol and fluconazole. Design constructs for evaluation include PK scaling, PK/safety, dose finding based on exposure equivalence and dose finding based on PK/PD. Some considerations for efficacy trials are also discussed.

**Results:** The following results will be described and reviewed during the presentation:

- CYP-mediated, highly metabolized drugs (midazolam) can be accommodated with "bottom-up" approaches reliant on good in vitro data and well-defined ontologic relationships. This is more difficult for non-CYP (e.g., plasma esterase; esmolol) metabolism considerations
- PBPK and pop-PK models compare reasonably well when adult data is available to guide (scale) pediatric dose exposure relationships.
- Developmental and organ function considerations are also easily accommodated and compared well in both PBPK and compartmental, pop-PK approaches depending on the availability of physiologic, physiochemical and/or adult PK data.

**Conclusions:** Many methodologies are suitable to incorporate disparate prior knowledge into modeling and simulation paradigms that guide pediatric drug development. In most cases, the choice of methodology and approach is dictated by the type and quality of the prior knowledge but also the objectives of the project. The uncertainty of this guidance would seem to be improved by the data hierarchy with adult data offering additional guidance (and confidence) with respect to the therapeutic window. Bottom-up approaches would seem to be an obvious choice for high fidelity predictions when rigorous in vitro data are available and when the objectives are PK-centric.

#### No Experience, No Problem: First-in-Children Dosing Using Bottom-up Approaches

#### Andrea N. Edginton

School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada

North American and European regulators are requiring the pharmaceutical industry to consider the potential for pediatric use of their drug candidates early in clinical development. Based on the pediatric study decision tree used by the US Food & Drug Administration [1], pharmacokinetic study is always required. Growth and developmental changes that are inherent to this sub-population make prediction of the dose vs. exposure link difficult and, because there has been no prior experience in children for a new drug, planning this pharmacokinetic study is challenging. By leveraging information on the known pharmacokinetics from first-in-man studies, the physiological changes associated with age (e.g. body weight, organ blood flows, binding protein concentrations) and the drug related properties relevant to pharmacokinetics (e.g. metabolisation pathway(s) and kinetic(s), lipophilicity), an informed estimate of age-dependent pharmacokinetics is possible. Using this bottom-up approach, three areas of predictive modeling for pediatrics have been (are being) developed that evaluate drug distribution, drug elimination and bioavailability.

- 1. Distribution volume is a function of both the drug and the organism and the physiological changes associated with age may have a profound effect on this parameter. From a modeling perspective, incorporation of the agerelated changes important for prediction of distribution volume (e.g. body fat content, total body water) into whole-body physiologically based pharmacokinetic (WB-PBPK) models [2,3] have the potential to guide us in estimating the likely change in distribution volume with age.
- 2. The age-related change in clearance has been the subject of much study and is the culmination of both changes in growth and in development. Growth-related changes are commonly scaled using allometry [4]. While this is generally sufficient for most drugs at an age where development is complete, for children under a certain age, this method alone will over predict clearance [5]. This is due to the reduced capacity of young children to eliminate some drugs due to immaturity in hepatic and renal function. Mechanistic approaches [6,7] to predicting clearance is possible through an examination of the numerous physiological (e.g. blood flow, enzyme concentration, protein binding) and drug-related (e.g. membrane permeability, protein binding affinity) properties that play a role in defining the extraction efficiency of an eliminating organ. These require knowledge of the pathways responsible for elimination and the importance of each to total clearance as well as an understanding of pathway ontogeny.
- 3. A method for the prediction of bioavailability of drug products in children is a work in progress. While we know that gastrointestinal properties (e.g. gastric emptying time, pH, surface area, bile acid concentration) are age-related, the prediction of how the rate and extent of drug absorption changes with age is largely undeveloped. A generalization that can be made for most interpretable clinical studies is that the rate of absorption increases with increasing age but the extent of absorption remains similar to that in adults. This is an area of predictive modeling that requires significant development.

These areas of predictive modeling for the guidance of the pediatric pharmacokinetic study are currently being employed by both industry and academia. Examples of these efforts will be presented.

- [1] http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm072109.pdf
- [2] Edginton AN, Schmitt W, Willmann S. 2006. Development and evaluation of a generic physiologically based pharmacokinetic model for children. Clin Pharmacokinet 45(10): 1013-34.
- [3] Bjorkman S. 2005. Prediction of drug disposition in infants and children by means of physiologically based pharmacokinetic (PBPK) modelling: theophylline and midazolam as model drugs. Br J Clin Pharmacol 59(6): 691-704.
- [4] Anderson BJ, Holford N. 2009. Mechanistic basis of using body size and maturation to predict clearance in humans. Drug Metab Pharmacokinet 24(1):25-36.
- [5] Edginton AN, Willmann S. 2006. Physiology-based versus allometric scaling of clearance in children; an eliminating process based comparison. Paediatric & Perinatal Drug Therapy 7(3): 146-153.
- [6] Edginton AN, Schmitt W, Voith B, Willmann S. 2006. A mechanistic approach for the scaling of clearance in children. Clin Pharmacokinet 45(7): 684-704.
- [7] Johnson TN, Rostami-Hodjegan A, Tucker GT. 2006. Prediction of the clearance of eleven drugs and associated variability in neonates, infants and children. Clin Pharmacokinet 45(9):931-56.

#### Evaluation of Performance of a Pediatric Pharmacokinetic Study Using a Simulation Based Design

Manisha Lamba, James Proulx, Rong Wang, Sriram Krishnaswami

Pfizer Inc., New London, CT, USA

**Objectives:** Pediatric development programs traditionally utilize a 2-stage approach: an initial pharmacokinetic (PK) study to identify doses followed by efficacy/safety trials. Yet, the efficiency of PK studies to select doses for efficacy/safety studies is often debatable. The purpose of this endeavor was to demonstrate a simulation-based framework using a single covariate of interest (body weight) to characterize the probability of making correct dosing-decisions (P(correct)).

**Methods:** The design optimization process involved: a) simulating individual clearance (CL) values for a trial design of interest, based on the assumed allometric weight-CL relationship (allometric model) and variability /uncertainty estimates; b) estimating CL and weight exponent for the simulated data using a weight-standardized power model; c) calculating predicted AUC for the weight range of interest using the typical CL for that weight range; and d) evaluating trial success by comparing the predicted AUC with that derived from the allometric model. P(correct) was calculated over 500 simulated trials. A prediction was considered correct if the predicted AUC fell within 66% to 150% (limits derived based on therapeutic index (TI) in adults) of those based on the allometric model. Weights were simulated for a given age by sampling from a distribution based on Center for Disease Control's growth-weight charts.

**Results:** Designs with 24 patients stratified into 3 age groups in the 2-18 year range (2-5; 6-11; and 12-18 years) with between-subject variability (BSV) in CL of 40% and an uncertainty in the typical value of 10%, provided approximately 81% probability of dosing correctly across a weight range of 8-70 kg (P(correct) range: 81% to 98%). Variations in allocation ratio within the target weight/age groups, BSV, and the therapeutic index significantly influenced the ability to select appropriate doses. Of note, decreasing the TI to 70-143% or increasing the BSV to 60%, reduced P(correct) for lower-weight subjects (8-14 kg) to 76% and 58% respectively. Interestingly, in the estimation model, if the weight exponent was fixed to 0.75 and an age effect was fitted, the P(Correct) for lower-weight subjects ranged from 70-80% at BSV of 40% and 42-50% at BSV of 60%.

**Conclusions:** A simulation-based framework, which accounts for all available information about the drug (e.g TI, variability/uncertainty, and other predictors of CL) to design PK studies in pediatric patients, should allow characterization of trial performance, resulting in better study design to select doses for pivotal trials. The findings are of particular importance to lower weight children who are susceptible to inaccurate dosing decisions even when there are no other covariates affecting PK.

#### PhRMA working group updates

**Session Chairs: Julie Stone and Amit Roy** 

#### Adaptive Dose-Ranging Studies: An Update from the PhRMA Working Group

#### José Pinheiro

Novartis Pharmaceuticals, East Hanover, NJ, USA

**Objectives:** As part of its Pharmaceutical Innovation initiative, the Pharmaceutical Research and Manufactures of America (PhRMA) formed a working group on adaptive dose-ranging studies (ADRS) to explore the value of this innovative class of designs in improving dose selection in clinical drug development and, more broadly, understanding the dose response relationship.

**Methods:** The ADRS WG undertook extensive simulation studies comparing adaptive and non-adaptive dose-ranging methods, putting forward preliminary conclusions and recommendations on the use of these methods in drug development.

**Results:** This talk will present an overview of the second round of evaluations produced by the WG, focusing on additional adaptive dose-ranging methods, the use of exposure-response models in dose finding, and the impact of dose selection in Phase II on the probability of success of Phase III programs. Updated conclusions and recommendations will be presented and discussed.

**Conclusions:** Adaptive and model-based dose finding methods can lead to substantial gains in information efficiency and dose selection accuracy and should be routinely considered in clinical drug development. Their usefulness relative to alternative, more traditional designs and methods will depend on a number of factors, which should be careful considered at the planning stage of the trial.

#### Optimizing TQT Studies through PK-PD: An OQT Working Group

#### Larisa Reyderman

Eisai Medical Research, Woodcliff Lake, NJ, USA

**Objectives:** An Optimized QT (OQT) working group is a subteam of PhRMA Clinical Pharmacology Technical Group. The mission of the OQT working group is to optimize performance characteristics of thorough QT trials by applying PK/PD methodologies. The key goals include 1) building and sharing PK/PD models to reduce uncertainly in QT studies such that false positive results are decreased; 2) leveraging data to make better decisions about study designs and samples sizes and 3) to propose a scientific basis to reduce the number of placebo patients in QT studies.

**Methods:** The OQT working group evaluated current PK/PD computational methodologies and identified key issues that need to be addressed to allow concentration-QT analysis to be the primary analysis of the OQT trials.

**Results:** This talk will present an overview of the OQT scope and activities and proposed technical plan with an outline of recommended C-QT models, model diagnostics, hypothesis testing criteria and validation based on simulated and experimental data.

**Conclusions:** The OQT working group was created to serve as a vehicle to share data and expertise to advance the PK/PD science in support of TQT trials and to leverage repetitive modeling work across pharmaceutical companies. An optimized PK/PD analysis methodology will allow to assess QT prolongation in a more cost-efficient way.

## Model-Based Drug Development PhRMA Initiative: Mapping the current status and future state for modeling and simulation in the pharmaceutical industry

<u>Julie Stone</u> (1), Dennis Grasela (2), Sandy Allerheiligen (3), Chris Banfield (4), Ih Chang (5), Rajesh Krishna (1), Chee Ng (2), Marc Pfister (2), Stacey Tannenbaum (5), and Jeff Wetherington (6)

PhRMA MBDD Committee: (1) Merck; (2) BMS; (3) Lilly; (4) Amgen; (5) Novartis; (6) GSK

**Background:** During the last decade, the pharmaceutical industry has increasingly applied modeling and simulation in drug development. This is consistent with the interest in model-based approaches by regulators and the directives outlined in documents such as FDA Critical Path Initiative and EU New Medicines Initiative. The full potential of incorporating model-based approaches in drug development and its impact on decision making has not been fully realized to date.

**Objectives:** A PhRMA initiative in model-based drug development (MBDD), sponsored by the Clinical Pharmacology Technical Group, was initiated with the aims: (1) to further understanding the current state of modeling and simulation in the pharmaceutical industry; (2) to assess future needs; and (3) to identify future directions necessary to realize the full potential of MBDD approaches in drug development.

**Results:** In this presentation, an overview of the ongoing activities to map the current state of MBDD (MBDD survey of PhRMA members, Strengths-Weaknesses-Opportunities-Threats [SWOT] analysis,) will be reviewed and results will be shared.

### **ACoP 2009 Participants**

| Abu-Raddad, Eyas  Bit Liliy and Company  Qyas@Liliy.com  Abutarif, Malaz  Bristol Myers Squibb  Mabutarif@gmail.com  Adwiyaya, Bambang  Adwiyaya, Bambang  Agarwal, Suresh  Rite Aid  Rite Aid  Suresh suraj12002@yahoo.com  Agarwal, Suresh  Agarwal, Suresh  Agerso, Henrik  Ayon Nordisk A/S  Rhadginovonordisk.com  Ahadich, Sima  Pfizer  Alamadi, Malidi  Simcyp Limited  Mahamadi, Malidi  Mirestry at Buffalo  Alt-Oudhia, Sihem  Alt-Oudhia, Sihem  Alt-Oudhia, Sihem  Alt-Oudhia, Sihem  University at Buffalo  Aksenov, Sergey  Novartis  Aksenov, Sergey  Novartis  Alt-Bafti, Fatemeh  University of Rhode Island  Alterheiligen, Sandra  Lilly Research Laboratories  Alt-Share, Qusai  Al-Share, Qusai  Al-Share, Qusai  Novartis Pharmaceuticals  Alvey, Christine  Pfizer  Christine alvey@pfizer.com  Mantea, Michael  Pfizer  Mantea, Michael  Pfizer  Mantea, Michael  Pfizer  Movartis Pharmaceuticals  Apelian, Charles  Novartis  Apelian, Charles  Novartis  Charles appelan@novartis.com  Malidian, Charles  Novartis  Charles appelan@novartis.com  Balile, Rebecca  Rosa & Co.  Balile, Rebecca  Rosa & Co | Abraham, Anson        | University of Buffalo                   | ansonab@gmail.com            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------|------------------------------|
| Abutarif, Malaz Bristol Myers Squibb Bambang Adiwijaya, Bambang Vertex Pharmaceuticals Bambang Adiwijaya, Bambang Vertex Pharmaceuticals Bambang Adiwijaya@vrtx.com Agraval, Suresh Rite Aid suresh sural 12002@yahoo.com felix agbo@astrazeneca.com Agerso, Henrik Novo Nordisk A/S hkag@novonordisk.com Anadieh, Sima Přizer sima ahadieh@přizer.com Anadieh. Sima Přizer sima ahadieh@přizer.com Mamadi, Malidi Simcyp Limited mahamadi@simcyp.com jaceun.ahn@přizer.com Jahn. Jae Eun Přizer jaceun.ahn@přizer.com Jahn. Jae Eun Přizer jaceun.ahn@přizer.com Jahn. Jae Eun Přizer jaceun.ahn@přizer.com Jahn. Jae Eun University at Buffalo sihema@buffalo.edu Ajavon, Antoinette Long Island University totniajavon@gmail.com fatemeh@uri.edu Aksenov, Sergey Novartis sergey.aksenov@novartis.com matt@mango-solutions com stha@lilly.com Jalleheitigen, Sandra Lilly Research Laboratories srba@lilly.com University at Buffalo/ Novartis Pharmaceuticals qalshare@yahoo.com Jalleheitigen, Sandra University at Buffalo/ Novartis Pharmaceuticals qalshare@yahoo.com Jalleheitigen, Sandra University of Washington marilee@apl.washington.cdu Apelian, Charles Novartis Prizer michael.amantea@přizer.com marilee@apl.washington.edu Charles, Roslin Přizer rosalin.arends@přizer.com marilee@apl.washington.edu Con Přizer rosalin.arends@přizer.com marilee@apl.washington.edu Con Přizer rosalin.arends@přizer.com marilee@apl.washington.edu Con Přizer rosalin.arends@přizer.com bachman, William ICON Development Solutions william bachman@iconple.com Baehman, William ICON Development Solutions william bachman@iconple.com Barrett, Jeffrey The Children's Hospital of Philadelphia barrett@email.chop.edu University of Minnesota kbaron@gmail.com Barrett, Jeffrey The Children's Hospital of Philadelphia barrett@email.chop.edu University paul baverel@farmbio.uu.se caroline Bazzoli, Caroline INSERM U738 caroline bazzoli@insem.fr Přizer meg.bennetts@přizer.com Baverel, Paul Uppsala University paul baverel@farmbio.uu.se eserys.edu Uppsala University paul baverel@farmbio.uu.se seth.berry |                       | -                                       | 9.5                          |
| Adiwijaya, Bambang Vertex Pharmaceuticals Bambang Adiwijaya@vrtx.com Agarwal, Suresh Rite Aid suresh suraj12002@yahoo.com Agorso, Henrik Novo Nordisk A/S hkag@novonordisk.com Sima.ahadiehi@phizer.com Anadish, Sima Pfizer sima.ahadiehi@phizer.com Mahamadi, Malidi Simcyp_Limited m.ahamadi.gisimcyp_com Ahn.alae Eun Pfizer jaceun.ahn@pfizer.com Mahamadi, Malidi Simcyp_Limited sihema@bufialo.edu University at Buffalo sihema@bufialo.edu Com Akhlaghi, Fatemeh University of Rhode Island fatemehi@uri.edu Aksenov, Sergey Novartis sergey_Aksenov@novartis.com Malferheiligen, Sandra Lilly Research Laboratories sta@lilly.com untifemeligen, Sandra Lilly Research Laboratories sta@lilly.com dalshare@yahoo.com Allerheiligen, Sandra Lilly Research Laboratories sta@lilly.com dalshare@yahoo.com Novartis Pharmaceuticals dalshare@yahoo.com Pfizer christine.alvey@pfizer.com michael amantea@pfizer.com michael amantea@pfizer.com michael amantea@pfizer.com michael Amantea@pfizer.com michael Mantea@pfizer.com michael Amantea@pfizer.com prizer pri |                       | 1 1                                     | • 0 •                        |
| Agarwal, Suresh Rite Aid suresh suraj 12002@yahoo.com Agbo, Felix AstraZeneca felix.agbo@astrazeneca.com Agerso, Henrik Novo Nordisk ArS hkag@novonordisk.com Ahadieh, Sima Pfizer sima.ahadieh@pfizer.com Ahamadi, Malidi Simcyp Limited m.ahamadi@simcyp.com jaecun.ahn@pfizer.com Ahn, Jae Eun Pfizer jaecun.ahn@pfizer.com Ait-Oudhia, Sihem University at Buffalo sihema@buffalo.edu Ajavon, Antoinette Long Island University totoniajavon@gmail.com Akhlaghi, Fatemeh University of Rode Island fatemeh@uri edu Aksenov, Sergey Novartis sergey.aksenov@novartis.com Aldrdage, Matthew Mango Solutions matt@mango-solutions.com Allerheitigen, Sandra Lilly Research Laboratories sha@lilly.com Allerheitigen, Sandra University at Buffalo/ Novartis Pharmaceuticals Alvey, Christine Pfizer christine.alvey@pfizer.com Amantea, Michael Pfizer michael.amantea@pfizer.com Amantea, Michael Pfizer michael.amantea@pfizer.com Andrew, Marilee University of Washington marilee@apl.washington.edu Apelian, Charles Novartis charles.apelian@novartis.com Arends, Roslin Pfizer rosalin.arends@pfizer.com Baelhina, William ICON Development Solutions william.baehman@iconplc.com Baelilie, Rebecca Rosa & Co. rbaillie@nosandoc.com Barton, Hugh Pfizer Barton, Hugh Pfizer herion, Kyle University of Minnesota harnetsity of Minnesota harnetsity of Minnesota harnetsity of Minnesota harnetsity of merchaeur@iconplc.com Barverel, Paul Uppsala University Barverel, Paul Uppsala University Barverel, Paul Uppsala University Bernyt, Seth Quintiles Bergsma, Arthur Merck arbopsala-dienerek.com Bergsman, Arthur Bergsman, Arthur Bergsman, Arthur Bergsman, Arthur Bergsman, Ar |                       |                                         |                              |
| Agbo, Felix Agerso, Henrik Novo Nordisk A/S Aladieh, Sima Agerso, Henrik Novo Nordisk A/S Aladieh, Sima Agerso Ahanadi, Malidi Simey Limited Mahamadi@simcyp.com Ahanadi, Malidi Alicoudhia, Sihem Alicoudhia, Sihemadia, Sergeya Alicoudhia, Sergeya Alicoudhia, Sihemadia, Sergeya Alicoudhia, Sergeya A |                       |                                         |                              |
| Agersø, Henrik Novo Nordisk A/S sima ahadieh@pfizer.com sima ahadieh@pfizer.dom sima ahadieh@pfizer.do |                       |                                         | _                            |
| Ahadieh, Sima Ahamadi, Malidi Simcyp Limited Ahamadi, Malidi Simcyp Limited Mahamadi, Malidi Simcyp Limited Mahamadi, Malidi Simcyp Limited Mahamadi@simcyp com jaeeun.ahn@pfizer com jaeeun.ahn@pfizer com Ait-Oudhia, Sihem University at Buffalo Sihema@buffalo.edu toniajavon@gmail.com Akhlaghi, Fatemeh Aksenov, Sergey Novartis Sergey aksenov@novartis.com Aldridge, Matthew Mango Solutions Malterheiligen, Sandra Lilly Research Laboratories University at Buffalo' Novartis Pharmaceuticals Al-Share, Qusai University at Buffalo' Novartis Pharmaceuticals Al-Share, Qusai University at Buffalo' Novartis Pharmaceuticals Al-Share, Qusai Alrey, Christine Pfizer Christine alvey@pfizer.com michael.amantea@pfizer.com michael.amantea@pfizer.com marilee@apl.washington.edu Apelian, Charles Novartis Phizer Novartis Charles, apelian@novartis.com rosalin arends@pfizer.com sulliam.bachman@iconplc.com Bachman, William ICON Development Solutions william.bachman@iconplc.com Balgi, Ganesh Entelos, Inc. Balgi, Ganesh Entelos, Inc. Barrett, Jeffrey The Children's Hospital of Philadelphia Baurer, Robert ICON Development Solutions Prizer Barrett, Jeffrey The Children's Hospital of Philadelphia Bauer, Robert ICON Development Solutions Paverel, Paul Uppsala University paul.baverel@farmbio.uu.se Bazoel, Caroline Baverel, Paul Uppsala University paul.baverel@farmbio.uu.se Bazoel, Caroline Baverel, Ron Rosa & Co. Bender, Brendan Genentech, Inc. Bennetts, Margherita Fizer meg.bennetts@mich.com Bergsman, Arthur Merck Bergsman, Tim Metrum Research Group / Metrum Institute Bergsman, Tim Metrum Research Group / Metrum En |                       |                                         | <u> </u>                     |
| Ahmadi, Malidi Ahn, Jae Eun Pfizer  Jaeun ahn@pfizer.com Altr.Oudhia, Sihem University at Buffalo Ajavon, Antoinette Long Island University toniajavon@gmail.com Akhlaghi, Fatemeh University of Rhode Island Aksenov, Sergey Novartis Aksenov, Sergey Novartis Aldridge, Matthew Mango Solutions Aldridge, Matthew Allerbeiligen, Sandra Al-Share, Qusai Al-S | _                     |                                         |                              |
| Ahn, Jae Eun Pfizer jaeun.ahn@pfizer.com Ait-Oudnia, Sihem University at Buffalo sihema@buffalo.edu Ajavon, Antoinette Long Island University toniajavon@gmail.com Akhlaghi, Fatemeh University of Rhode Island fatemeh@uri.edu Aksenov, Sergey Novartis sergey.aksenov@novartis.com Aldridge, Matthew Mango Solutions matt@mango-solutions.com Allerheiligen, Sandra Lilly Research Laboratories srba@lilly.com Allerheiligen, Sandra University at Buffalo/ Novartis Pharmaceuticals qalshare@yahoo.com Allerheiligen, Sandra University at Buffalo/ Novartis Pharmaceuticals dhistory.com Aley, Christine Pfizer christine.alvey@pfizer.com Amantea, Michael Pfizer michael.amantea@pfizer.com Amantea, Michael Pfizer michael.amantea@pfizer.com Andrew, Marilee University of Washington marilee@apl.washington.edu Apelian, Charles Novartis charles apeliam@novartis.com Arends, Roslin Pfizer rosalin.arends@pfizer.com Bachman, William ICON Development Solutions william bachnan@icomplc.com Baillie, Rebecca Rosa & Co. rbaillie@rosanadco.com Balgi, Ganesh Entelos, Inc. balgi@entelos.com Baron, Kyle University of Minnesota kbaron@gmail.com Barrett, Jeffrey The Children's Hospital of Philadelphia barrett@email.chop.edu Bauer, Robert ICON Development Solutions robert.bauer@iconplc.com Baverel, Paul Uppsala University paul.baverel@farmbio.uu.se Bazzoli, Caroline INSERM U738 caroline bazzoli@inserm.fr Beaver, Ron Rosa & Co. rbeaver@rosanadco.com Bennetts, Margherita Pfizer meg.bennetts@pfizer.com Bergsma, Tim Merck arthur bergman@merck.com Bergsma, Tim Merum Research Group / Metrum Institute to Bennetts. Margherita Pfizer martin.bergstrand@farmbio.uu.se Bergsma, Tim Metrum Research Group / Metrum Institute to Bennetts. Margherita Pfizer meg.bennetts@pfizer.com Bergsma, Tim Metrum Research Group / Metrum Institute to Bennetts. Margherita Pfizer alison.betts@pfizer.com Bergsma, Tim Metrum Research Group / Metrum Institute to Bennetts. Margherita Pfizer alison.betts@pfizer.com Bergstrand, Martin Uppsala University martin.bergstrand@farmbio.uu.se Bergstrand, |                       |                                         |                              |
| Ait-Oudhia, Sihem Ajavon, Antoinette Ajavon, Antoinette Long Island University toniajavon@gmail.com Akhlaghi, Fatemeh Akhlaghi, Fatemeh Aksenov, Sergey Novartis sergev, aksenov@novartis.com Aldridge, Matthew Mango Solutions Allerheiligen, Sandra Allerheiligen, Sandra Lilly Research Laboratories Toniversity at Buffalo/ Novartis Pharmaceuticals Al-Share, Qusai Al-Share, Qusai Al-Share, Qusai Al-Share, Qusai Al-Share, Qusai Pfizer Christine Pfizer Andrew, Marilee Alorew, Marilee University of Washington Andrew, Marilee University of Washington Andrew, Marilee Arends, Roslin Pfizer Arends, Roslin Pfizer Pfizer Novartis Arends, Roslin Pfizer Novartis Arends, Roslin Pfizer Arends, Roslin Pfizer Rosa & Co. Balgi, Ganesh Balgi, Ganesh Entelos, Inc. Balgi@entelos.com Barrott, Hugh Pfizer Bugh.barton@gmail.com Barrett, Jeffrey The Children's Hospital of Philadelphia Bauer, Robert Baverel, Paul Uppsala University paul-baverel@earmbio.uu.se Bavzoli, Caroline Braverl, Paul Uppsala University Bavzerl, Brondan Genentech, Inc. Bender, Brendan Beneuts, Margherita Pfizer Bender, Brendan Beneuts, Margherita Pfizer Bender, Brendan Bennetts, Margherita Bergman, Arthur Merck Bergsman, Tim Metrum Research Group / Metrum Institute Bergstrand, Martin Uppsala University Designation Bergsman, Com Benders, Brendan Bergman, Caroline Bergstrand, Martin Uppsala University Designation Bergstrand, Martin Uppsala University Designation De |                       |                                         |                              |
| Ajavon, Antoinette Long Island University toniajavon@gmail.com Akhlaghi, Fatemeh University of Rhode Island fatemeh@uri.edu Aksenov, Sergey Novartis sergey.aksenov@novartis.com Aldridge, Matthew Mango Solutions matt@mango-solutions.com Allerheiligen, Sandra Lilly Research Laboratories srba@lilly.com Al-Share, Qusai University at Buffalo/ Novartis Pharmaceuticals qalshare@yahoo.com Novartis Pharmaceuticals Alvey, Christine Pfizer christine.alvey@pfizer.com Amantea, Michael Pfizer michael.amantea@pfizer.com Amartea, Marilee University of Washington marilee@apl.washington.edu Apelian, Charles Novartis charles.apelian@novartis.com Ardrew, Marilee University of Washington william.bachman@comple.com Bachman, William ICON Development Solutions william.bachman@comple.com Ballile, Rebecca Rosa & Co. rbaillie@rosanatoc.com Balgi, Ganesh Entelos, Inc. balgi@entelos.com Baron, Hugh Pfizer hecklideris Hospital of Philadelphia barrettj@email.chop.edu Barrett, Jeffrey The Children's Hospital of Philadelphia barrettj@email.chop.edu Bauert, Robert ICON Development Solutions robert bauer@iconple.com Baverel, Paul Uppsala University paul.baverel@farmbio.uu.se Bazzoli, Caroline INSERM U738 caroline bazzoli@inserm.fr Beaver, Ron Rosa & Co. rbeauer@iconple.com Bennetts, Margherita Pfizer meg.bennetts@pfizer.com Bergman, Arthur Merck arthur_bergman@merck.com Bergsman, Tim Metrum Research Group / Metrum Institute implements (complements) alison betts@pfizer.com Bergsman, Tim Metrum Research Group / Metrum Institute seth.berry@quintiles.com Bergstrand, Martin Uppsala University martin.bergman@merck.com Bergsman, Tim Metrum Research Group / Metrum Institute seth.berry@quintiles.com Bergsman, Tim Metrum Research Group / Metrum Institute implements.gom Bergstrand, Martin Uppsala University martin.berggman@merck.com Bergsman, Tim Metrum Research Group / Metrum Institute seth.berry@quintiles.com Bergstrand, Martin Uppsala University implements.gom Bergstrand, Martin Uppsala University implements.gom Bergstrand, Merch Allergan kbhasi@pfizer. | ,                     |                                         |                              |
| Akhlaghi, Fatemeh University of Rhode Island fatemeh@uri.edu Aksenov, Sergey Novartis sergey. Aksenov@novartis.com Aldridge, Matthew Mango Solutions matt@mango-solutions.com Allerheiligen, Sandra Lilly Research Laboratories srba@ilily.com  All-Share, Qusai University at Buffalo/ Novartis Pharmaceuticals Alvey, Christine Pfizer christine.alvey@pfizer.com michael.amantea@pfizer.com hartity.genal.achop.edu michael.amantea@pfizer.com hartity.genal.chop.edu michael.amantea@pfizer.com michael.amantea@pfizer.com michael.amantea@pfizer.com hartity.genal.chop.edu michael.amantea@pfizer.com hartity.genal.chop.edu michael.amantea@pfizer.com michael.amantea@pfizer.com hartity.genal.chop.edu michael.amantea@pfizer.com michael.amantea@pfizer.com michael.amantea@pfizer.com hartity.genal.chop.edu michael.amantea@pfizer.com michael.amantea@pfizer.com michael.amantea@pfizer.com hartity.genal.chop.edu michael.amantea@pfizer.com michael.amantea@ |                       | ·                                       |                              |
| Aksenov, Sergey Novartis sergey.aksenov@novartis.com Aldridge, Matthew Mango Solutions matt@mango-solutions.com Allerheiligen, Sandra Lilly Research Laboratories srba@lilly.com University at Buffalo/ Novartis Pharmaceuticals qalshare@yahoo.com Al-Share, Qusai University of Washington qalshare@yahoo.com Alvey, Christine Pfizer christine.alvey@pfizer.com Manatea, Michael Pfizer michael.amantea@pfizer.com Andrew, Marilee University of Washington marilee@apl.washington.edu Apelian, Charles Novartis charles.apelian@novartis.com Arends, Roslin Pfizer rosalin.arends@pfizer.com Bachman, William ICON Development Solutions william.bachman@iocnplc.com Ballile, Rebecca Rosa & Co. rbaillie@rosandco.com Ballie, Rebecca Rosa & Co. rbaillie@rosandco.com Baron, Kyle University of Minnesota kbaron@gmail.com Barton, Hugh Pfizer hugh.barton@pfizer.com Barrett, Jeffrey The Children's Hospital of Philadelphia bartettj@mail.chop.edu Bauer, Robert ICON Development Solutions robert.bauer@iconplc.com Baverel, Paul Uppsala University paul baverel@farmbio.uu.se Bazzeli, Caroline INSERM U738 caroline.bazzoli@inserm.fr Beaver, Ron Rosa & Co. rbaever@osandco.com Bender, Brendan Genentech, Inc. bbender@gene.com Bennetts, Margherita Pfizer meg.bennetts@pfizer.com Bergsman, Arthur Merck arthur bergman@merck.com Bergsman, Tim Metrum Research Group / Metrum Institute Bergsman, Tim Metrum Research Group / Metrum Institute Bergsman, Tim Metrum Research Group / Metrum Institute Bergstrand, Martin Uppsala University martin.bergstrand@farmbio.uu.se Bergstrand, Martin Uppsala University martin.bergstrand@farmbio.uu.se Bergstrand, Martin Uppsala University robertbies@yahoo.com Bibs, Robert Indiana University robertbies@yahoo.com Betts, Alison Pfizer alison.betts@pfizer.com Bhasi, Kavitha Allergan Bhasi, Kavitha Allergan Bibsies, Robert Indiana University robertbies@yahoo.com Bibnorl, Sebastien Bionel@cognigencorp.com Bibnorl, Sebastien Bionel@cognigencorp.com Bibnorl, Sebastien Boni, Joseph Wyeth Research Doni, Joseph Pfizer                              |                       | - i                                     |                              |
| Aldridge, Matthew Allerheiligen, Sandra Lilly Research Laboratories stra@lilly.com Al-Share, Qusai Al-Con Betts, Alison Al-Ergan Al-Con Betts, Alison Al-Ergan Al-Con Betts, Alison Al-Ergan Al-Con Betts, Alison Al-Ergan Al-Con Al-Con Betts, Alison Al-Ergan Al-Con Al-Con Al-Con Al-Con Al-Con Al-Con Al-Con Al-Con Al-Con |                       | •                                       | <u> </u>                     |
| Allerheiligen, Sandra  Al-Share, Qusai  Al-Share, Qusai  Al-Share, Qusai  Alvey, Christine  Pfizer  Andrew, Marilee  University of Washington  Bachman, William  Baron, Kyle  University of Minnesota  Barrett, Jeffrey  Barrett, Jeffrey  Barrett, Jeffrey  Baverel, Paul  Upsala University  Dysala University  Dysala University  paul-baverel@armbio.uu.se  Bazzoli, Caroline  Baver, Ron  Rosa & Co.  Bender, Brendan  Genentech, Inc.  Bender, Brendan  Genentech, Inc.  Bergstrand, Martin  Upsala University  Merck  Bergstrand, Martin  Upsala University  Merck  Bergstrand, Martin  Upsala University  Merck  Bergstrand, Martin  Upsala University  Pfizer  Boxley Agodon  Metala Martin  Bergstrand, Martin  Upsala University  Bes, Robert  Indiana University  Bes, Robert  Indiana University  Doucher, Joseph  Wyeth Research  Box & Co.  Joseph Pfizer  Joseph, Doucher, Joseph  Wyeth Research  Doucher, Joseph  Pfizer  Joseph, Poblicom  Arless, Sandro.  Arlesta, Sandro.  Allera, Arlesta, Sandro.  Arlesta, Sandro |                       |                                         | <u> </u>                     |
| Al-Share, Qusai Alvey, Christine Pfizer Amantea, Michael Pfizer Amantea, Michael Pfizer Amantea, Michael Pfizer Amentea, Michael Pfizer Amentea, Michael Pfizer Amentea, Michael Pfizer Amentea, Michael Novartis Apelian, Charles Novartis Charles, Apelian@novartis.com Arends, Roslin Pfizer Rosalina.rends@pfizer.com William.bachman@iconplc.com Baillie, Rebecca Rosa & Co. Balgi, Ganesh Barton, Kyle University of Minnesota Barrott, Jeffrey Barrett, Jeffrey The Children's Hospital of Philadelphia Bauer, Robert Baverel, Paul Uppsala University Bazzoli, Caroline Baverel, Paul Uppsala University Beaver, Ron Rosa & Co. Bender, Brendan Genentech, Inc. Bender, Brendan Bennetts, Margherita Bergman, Arthur Merck Bergsman, Tim Metrum Research Group / Metrum Institute Bright Alexandro Bright Alexandro Bright Alexandro Bright Indiana University Tooline Insermand Research Bensis, Kavitha Allergan Bhasi, Kavitha Bloni, Joseph Wyeth Research Boolucher, Joseph Pfizer Boucher, Joseph Pfizer Joseph. Pfizer                                                                                                                                                                                                                                                                                                                          |                       |                                         |                              |
| Alvey, Christine Pfizer christine. Alvey, Christine Pfizer christine. Alvey, Christine Pfizer christine. Alvey, Christine Pfizer michael.amantea@pfizer.com michael.amantea.go.com michael.amantea.go.go.com michael.amantea.go.go.go.com michael.amantea.go.go.go.go.com michael.amantea.go.go.go.go.go.com michael.amantea.go.go.go.go.go.go.go.go.go.go.go.go.go.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Allerneiligen, Sandra |                                         | srba@iiiiy.com               |
| Amantea, Michael Pfizer michael.amantea@pfizer.com Andrew, Marilee University of Washington marilee@apl.washington.edu Apelian, Charles Novartis charles.apelian@novartis.com Arends, Roslin Pfizer rosalin.arends@pfizer.com Bachman, William ICON Development Solutions william.bachman@conplc.com Baillie, Rebecca Rosa & Co. rbaillie@rosaandco.com Balgi, Ganesh Entelos, Inc. balgi@entelos.com Baron, Kyle University of Minnesota kbaron@gmail.com Barrett, Jeffrey The Children's Hospital of Philadelphia barrettj@email.chop.edu Bauer, Robert ICON Development Solutions robert.bauer@iconplc.com Baverel, Paul Uppsala University paul.baverel@farmbio.uu.se Bazzoli, Caroline INSERM U738 caroline.bazzoli@inserm.fr Beaver, Ron Rosa & Co. rbeaver@rosaandco.com Bennetts, Margherita Pfizer meg.bennetts@pfizer.com Bergman, Arthur Merck arthur_bergman@merck.com Bergsman, Tim Metrum Research Group / Metrum Institute timb@metrumrg.com Bergsrand, Martin Uppsala University martin.bergstrand@farmbio.uu.se Berry, Seth Quintiles Betts, Alison Pfizer alison.betts@pfizer.com Bhasi, Kavitha Allergan kbhasi@gmail.com Birnbaum, Angela University of Minnesota bonij@wyeth.com Bosley, Jim Rosa & Co. jbosley@rosaandco.com Boucher, Joseph Pfizer joseph.£boucher@pfizer.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Al-Share, Qusai       |                                         | qalshare@yahoo.com           |
| Andrew, Marilee University of Washington marilee@apl.washington.edu Apelian, Charles Novartis charles.apelian@novartis.com Arends, Roslin Pfizer rosalin.arends@pfizer.com Bachman, William ICON Development Solutions william.bachman@iconplc.com Baillie, Rebecca Rosa & Co. rbaillie@rosaandco.com Balgi, Ganesh Entelos, Inc. balgi@entelos.com Baron, Kyle University of Minnesota kbaron@gmail.com Barton, Hugh Pfizer hugh.barton@pfizer.com Barrett, Jeffrey The Children's Hospital of Philadelphia barrettj@email.chop.edu Bauer, Robert ICON Development Solutions robert.bauer@iconplc.com Baverel, Paul Uppsala University paul.baverel@farmbio.uu.se Bazzoli, Caroline INSERM U738 caroline.bazzoli@inserm.fr Beaver, Ron Rosa & Co. rbeaver@rosaandco.com Bender, Brendan Genentech, Inc. bbender@gene.com Bennetts, Margherita Pfizer meg.bennetts@pfizer.com Bergsma, Tim Merck arthur bergman@merck.com Bergsma, Tim Merum Research Group / Metrum Institute timb@metrumrg.com Bergstrand, Martin Uppsala University martin.bergstrand@farmbio.uu.se Berry, Seth Quintiles seth.berry@quintiles.com Betts, Alison Pfizer alison.betts@pfizer.com Betts, Alison Pfizer alison.betts@pfizer.com Bhasi, Kavitha Allergan kbhasi@gmail.com Binbaum, Angela University robertbies@yahoo.com Binbaum, Angela University of Minnesota birnb002@umn.edu Booli, Joseph Wyeth Research bonij@wyeth.com Bosley, Jim Rosa & Co. jbosley@rosaandco.com Boucher, Joseph Pfizer joseph.f.boucher@pfizer.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Alvey, Christine      | Pfizer                                  | christine.alvey@pfizer.com   |
| Apelian, Charles Novartis charles.apelian@novartis.com Arends, Roslin Pfizer rosalin.arends@pfizer.com Bachman, William ICON Development Solutions william.bachman@iconplc.com Baillie, Rebecca Rosa & Co. rbaillie@rosaandco.com Balgi, Ganesh Entelos, Inc. balgi@entelos.com Barron, Kyle University of Minnesota kbaron@gmail.com Barron, Hugh Pfizer hugh.barton@pfizer.com Barrett, Jeffrey The Children's Hospital of Philadelphia barrettj@email.chop.edu Bauer, Robert ICON Development Solutions robert.bauer@iconplc.com Baverel, Paul Uppsala University paul.baverel@farmbio.uu.se Bazzoli, Caroline INSERM U738 caroline.bazzoli@inserm.fr Beaver, Ron Rosa & Co. rbeaver@rosaandco.com Bender, Brendan Genentech, Inc. bbender@gene.com Bennetts, Margherita Pfizer meg.bennetts@pfizer.com Bergman, Arthur Merck arthur_bergman@merck.com Bergsman, Tim Metrum Research Group / Metrum Institute timb@metrumrg.com Bergstrand, Martin Uppsala University martin.bergstrand@farmbio.uu.se Berry, Seth Quintiles seth.berry@quintiles.com Betts, Alison Pfizer alison.betts@pfizer.com Bhasi, Kavitha Allergan kbhasi@gmail.com Bies, Robert Indiana University robertbies@yahoo.com Bihorel, Sebastien Cognigen Corporation Sebastien.Bihorel@cognigencorp.com Birnbaum, Angela University of Minnesota birnb002@umn.edu Boni, Joseph Wyeth Research bonij@wyeth.com Bosley, Jim Rosa & Co. jbosley@rosaandco.com joseph.boucher@pfizer.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Amantea, Michael      | Pfizer                                  | michael.amantea@pfizer.com   |
| Arends, Roslin Pfizer rosalin.arends@pfizer.com Bachman, William ICON Development Solutions william.bachman@iconplc.com Baillie, Rebecca Rosa & Co. rbaillie@rosaandco.com Balgi, Ganesh Entelos, Inc. balgi@entelos.com Baron, Kyle University of Minnesota kbaron@gmail.com Barton, Hugh Pfizer hugh.barton@pfizer.com Barrett, Jeffrey The Children's Hospital of Philadelphia barrettj@email.chop.edu Bauer, Robert ICON Development Solutions robert.bauer@iconplc.com Baverel, Paul Uppsala University paul.baverel@farmbio.uu.se Bazzoli, Caroline INSERM U738 caroline.bazzoli@inserm.fr Beaver, Ron Rosa & Co. rbeaver@rosaandco.com Bender, Brendan Genentech, Inc. bbender@gene.com Bennetts, Margherita Pfizer meg.bennetts@pfizer.com Bergman, Arthur Merck arthur_bergman@merck.com Bergsman, Tim Metrum Research Group / Metrum Institute timb@metrumrg.com Bergstrand, Martin Uppsala University martin.bergstrand@farmbio.uu.se Berry, Seth Quintiles seth.berry@quintiles.com Betts, Alison Pfizer alison.betts@pfizer.com Bhasi, Kavitha Allergan kbhasi@gmail.com Bies, Robert Indiana University robertbies@yahoo.com Birnbaum, Angela University of Minnesota birnb002@umn.edu Boni, Joseph Wyeth Research bonij@wyeth.com Bosley, Jim Rosa & Co. jbosley@rosaandco.com Joseph. Pfizer joseph.f.boucher@pfizer.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Andrew, Marilee       | University of Washington                | marilee@apl.washington.edu   |
| Arends, Roslin Pfizer rosalin.arends@pfizer.com Bachman, William ICON Development Solutions william.bachman@iconplc.com Baillie, Rebecca Rosa & Co. rbaillie@rosaandco.com Balgi, Ganesh Entelos, Inc. balgi@entelos.com Baron, Kyle University of Minnesota kbaron@gmail.com Barton, Hugh Pfizer hugh.barton@pfizer.com Barrett, Jeffrey The Children's Hospital of Philadelphia barrettj@email.chop.edu Bauer, Robert ICON Development Solutions robert.bauer@iconplc.com Baverel, Paul Uppsala University paul.baverel@farmbio.uu.se Bazzoli, Caroline INSERM U738 caroline.bazzoli@inserm.fr Beaver, Ron Rosa & Co. rbeaver@rosaandco.com Bender, Brendan Genentech, Inc. bbender@gene.com Bennetts, Margherita Pfizer meg.bennetts@pfizer.com Bergman, Arthur Merck arthur_bergman@merck.com Bergsman, Tim Metrum Research Group / Metrum Institute timb@metrumrg.com Bergstrand, Martin Uppsala University martin.bergstrand@farmbio.uu.se Berry, Seth Quintiles seth.berry@quintiles.com Betts, Alison Pfizer alison.betts@pfizer.com Bhasi, Kavitha Allergan kbhasi@gmail.com Bies, Robert Indiana University robertbies@yahoo.com Birnbaum, Angela University of Minnesota birnb002@umn.edu Boni, Joseph Wyeth Research bonij@wyeth.com Bosley, Jim Rosa & Co. jbosley@rosaandco.com Joseph. Pfizer joseph.f.boucher@pfizer.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Apelian, Charles      | Novartis                                | charles.apelian@novartis.com |
| Baillie, Rebecca Rosa & Co. rbaillie@rosaandco.com Balgi, Ganesh Entelos, Inc. balgi@entelos.com Baron, Kyle University of Minnesota kbaron@gmail.com Barton, Hugh Pfizer hugh.barton@pfizer.com Bartett, Jeffrey The Children's Hospital of Philadelphia barrettj@email.chop.edu Bauer, Robert ICON Development Solutions robert.bauer@iconplc.com Baverel, Paul Uppsala University paul.baverel@farmbio.uu.se Bazzoli, Caroline INSERM U738 caroline.bazzoli@inserm.fr Beaver, Ron Rosa & Co. rbeaver@rosaandco.com Bender, Brendan Genentech, Inc. bbender@gene.com Bennetts, Margherita Pfizer meg.bennetts@pfizer.com Bergman, Arthur Merck arthur_bergman@merck.com Bergsma, Tim Metrum Research Group / Metrum Institute timb@metrumrg.com Bergstrand, Martin Uppsala University martin.bergstrand@farmbio.uu.se Berry, Seth Quintiles seth.berry@quintiles.com Betts, Alison Pfizer alison.betts@pfizer.com Bhasi, Kavitha Allergan kbhasi@gmail.com Bies, Robert Indiana University robertbies@yahoo.com Bihorel, Sebastien Cognigen Corporation Sebastien.Bihorel@cognigencorp.com Binrbaum, Angela University of Minnesota birnb002@umn.edu Boni, Joseph Wyeth Research bonij@wyeth.com Bosley, Jim Rosa & Co. jbosley@rosaandco.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Arends, Roslin        | Pfizer                                  | rosalin.arends@pfizer.com    |
| Balgi, GaneshEntelos, Inc.balgi@entelos.comBaron, KyleUniversity of Minnesotakbaron@gmail.comBarton, HughPfizerhugh.barton@pfizer.comBarrett, JeffreyThe Children's Hospital of Philadelphiabarrettj@email.chop.eduBauer, RobertICON Development Solutionsrobert.bauer@iconplc.comBaverel, PaulUppsala Universitypaul.baverel@farmbio.uu.seBazzoli, CarolineINSERM U738caroline.bazzoli@inserm.frBeaver, RonRosa & Co.rbeaver@rosaandco.comBender, BrendanGenentech, Inc.bbender@gene.comBennetts, MargheritaPfizermeg.bennetts@pfizer.comBergman, ArthurMerckarthur_bergman@merck.comBergsma, TimMetrum Research Group / Metrum Institutetimb@metrumrg.comBergstrand, MartinUppsala Universitymartin.bergstrand@farmbio.uu.seBerry, SethQuintilesseth.berry@quintiles.comBetts, AlisonPfizeralison.betts@pfizer.comBhasi, KavithaAllergankbhasi@gmail.comBies, RobertIndiana Universityrobertbies@yahoo.comBihorel, SebastienCognigen CorporationSebastien.Bihorel@cognigencorp.comBirnbaum, AngelaUniversity of Minnesotabirnb002@umn.eduBoni, JosephWyeth Researchbonij@wyeth.comBoucher, JosephPfizerjoseph.f.boucher@pfizer.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bachman, William      | ICON Development Solutions              | william.bachman@iconplc.com  |
| Baron, Kyle University of Minnesota kbaron@gmail.com Barton, Hugh Pfizer hugh.barton@pfizer.com Barrett, Jeffrey The Children's Hospital of Philadelphia barrettj@email.chop.edu Bauer, Robert ICON Development Solutions robert.bauer@iconplc.com Baverel, Paul Uppsala University paul.baverel@farmbio.uu.se Bazzoli, Caroline INSERM U738 caroline.bazzoli@inserm.fr Beaver, Ron Rosa & Co. rbeaver@rosaandco.com Bender, Brendan Genentech, Inc. bbender@gene.com Bennetts, Margherita Pfizer meg.bennetts@pfizer.com Bergman, Arthur Merck arthur_bergman@merck.com Bergsma, Tim Metrum Research Group / Metrum Institute timb@metrumrg.com Bergstrand, Martin Uppsala University martin.bergstrand@farmbio.uu.se Berry, Seth Quintiles seth.berry@quintiles.com Betts, Alison Pfizer alison.betts@pfizer.com Bhasi, Kavitha Allergan kbhasi@gmail.com Bies, Robert Indiana University robertbies@yahoo.com Bihorel, Sebastien Cognigen Corporation Sebastien.Bihorel@cognigencorp.com Birnbaum, Angela University of Minnesota birnb002@umn.edu Boni, Joseph Wyeth Research bonij@wyeth.com Bosley, Jim Rosa & Co. jbosley@rosaandco.com Boucher, Joseph Pfizer joseph.f.boucher@pfizer.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Baillie, Rebecca      | Rosa & Co.                              | rbaillie@rosaandco.com       |
| Barton, Hugh Pfizer hugh.barton@pfizer.com Barrett, Jeffrey The Children's Hospital of Philadelphia barrettj@email.chop.edu Bauer, Robert ICON Development Solutions robert.bauer@iconplc.com Baverel, Paul Uppsala University paul.baverel@farmbio.uu.se Bazzoli, Caroline INSERM U738 caroline.bazzoli@inserm.fr Beaver, Ron Rosa & Co. rbeaver@rosaandco.com Bender, Brendan Genentech, Inc. bbender@gene.com Bennetts, Margherita Pfizer meg.bennetts@pfizer.com Bergman, Arthur Merck arthur_bergman@merck.com Bergsma, Tim Metrum Research Group / Metrum Institute timb@metrumrg.com Bergstrand, Martin Uppsala University martin.bergstrand@farmbio.uu.se Berry, Seth Quintiles seth.berry@quintiles.com Betts, Alison Pfizer alison.betts@pfizer.com Bhasi, Kavitha Allergan kbhasi@gmail.com Bies, Robert Indiana University robertbies@yahoo.com Binbaum, Angela University of Minnesota birnb002@umn.edu Boni, Joseph Wyeth Research bonij@wyeth.com Bosley, Jim Rosa & Co. jbosley@rosaandco.com Boucher, Joseph Pfizer joseph.f.boucher@pfizer.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Balgi, Ganesh         | Entelos, Inc.                           | balgi@entelos.com            |
| Barrett, Jeffrey The Children's Hospital of Philadelphia barrettj@email.chop.edu Bauer, Robert ICON Development Solutions robert.bauer@iconplc.com Baverel, Paul Uppsala University paul.baverel@farmbio.uu.se Bazzoli, Caroline INSERM U738 caroline.bazzoli@inserm.fr Beaver, Ron Rosa & Co. rbeaver@rosaandco.com Bender, Brendan Genentech, Inc. bbender@gene.com Bennetts, Margherita Pfizer meg.bennetts@pfizer.com Bergman, Arthur Merck arthur_bergman@merck.com Bergsma, Tim Metrum Research Group / Metrum Institute timb@metrumrg.com Bergstrand, Martin Uppsala University martin.bergstrand@farmbio.uu.se Berry, Seth Quintiles seth.berry@quintiles.com Betts, Alison Pfizer alison.betts@pfizer.com Bhasi, Kavitha Allergan kbhasi@gmail.com Bies, Robert Indiana University robertbies@yahoo.com Binbaum, Angela University of Minnesota birnb002@umn.edu Boni, Joseph Wyeth Research bonij@wyeth.com Bosley, Jim Rosa & Co. jbosley@rosaandco.com Boucher, Joseph Pfizer joseph.f.boucher@pfizer.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Baron, Kyle           | University of Minnesota                 | kbaron@gmail.com             |
| Bauer, RobertICON Development Solutionsrobert.bauer@iconplc.comBaverel, PaulUppsala Universitypaul.baverel@farmbio.uu.seBazzoli, CarolineINSERM U738caroline.bazzoli@inserm.frBeaver, RonRosa & Co.rbeaver@rosaandco.comBender, BrendanGenentech, Inc.bbender@gene.comBennetts, MargheritaPfizermeg.bennetts@pfizer.comBergman, ArthurMerckarthur_bergman@merck.comBergsma, TimMetrum Research Group / Metrum Institutetimb@metrumrg.comBergstrand, MartinUppsala Universitymartin.bergstrand@farmbio.uu.seBerry, SethQuintilesseth.berry@quintiles.comBetts, AlisonPfizeralison.betts@pfizer.comBhasi, KavithaAllergankbhasi@gmail.comBies, RobertIndiana Universityrobertbies@yahoo.comBihorel, SebastienCognigen CorporationSebastien.Bihorel@cognigencorp.comBirnbaum, AngelaUniversity of Minnesotabirnb002@umn.eduBoni, JosephWyeth Researchbonij@wyeth.comBosley, JimRosa & Co.jbosley@rosaandco.comBoucher, JosephPfizerjoseph.f.boucher@pfizer.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Barton, Hugh          | Pfizer                                  | hugh.barton@pfizer.com       |
| Bauer, RobertICON Development Solutionsrobert.bauer@iconplc.comBaverel, PaulUppsala Universitypaul.baverel@farmbio.uu.seBazzoli, CarolineINSERM U738caroline.bazzoli@inserm.frBeaver, RonRosa & Co.rbeaver@rosaandco.comBender, BrendanGenentech, Inc.bbender@gene.comBennetts, MargheritaPfizermeg.bennetts@pfizer.comBergman, ArthurMerckarthur_bergman@merck.comBergsma, TimMetrum Research Group / Metrum Institutetimb@metrumrg.comBergstrand, MartinUppsala Universitymartin.bergstrand@farmbio.uu.seBerry, SethQuintilesseth.berry@quintiles.comBetts, AlisonPfizeralison.betts@pfizer.comBhasi, KavithaAllergankbhasi@gmail.comBies, RobertIndiana Universityrobertbies@yahoo.comBihorel, SebastienCognigen CorporationSebastien.Bihorel@cognigencorp.comBirnbaum, AngelaUniversity of Minnesotabirnb002@umn.eduBoni, JosephWyeth Researchbonij@wyeth.comBosley, JimRosa & Co.jbosley@rosaandco.comBoucher, JosephPfizerjoseph.f.boucher@pfizer.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Barrett, Jeffrey      | The Children's Hospital of Philadelphia | barrettj@email.chop.edu      |
| Bazzoli, Caroline INSERM U738 caroline.bazzoli@inserm.fr Beaver, Ron Rosa & Co. rbeaver@rosaandco.com Bender, Brendan Genentech, Inc. bbender@gene.com Bennetts, Margherita Pfizer meg.bennetts@pfizer.com Bergman, Arthur Merck arthur_bergman@merck.com Bergsma, Tim Metrum Research Group / Metrum Institute timb@metrumrg.com Bergstrand, Martin Uppsala University martin.bergstrand@farmbio.uu.se Berry, Seth Quintiles seth.berry@quintiles.com Betts, Alison Pfizer alison.betts@pfizer.com Bhasi, Kavitha Allergan kbhasi@gmail.com Bies, Robert Indiana University robertbies@yahoo.com Bihorel, Sebastien Cognigen Corporation Sebastien.Bihorel@cognigencorp.com Birnbaum, Angela University of Minnesota birnb002@umn.edu Boni, Joseph Wyeth Research bonij@wyeth.com Bosley, Jim Rosa & Co. jbosley@rosaandco.com Boucher, Joseph Pfizer joseph.f.boucher@pfizer.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bauer, Robert         |                                         | robert.bauer@iconplc.com     |
| Bazzoli, CarolineINSERM U738caroline.bazzoli@inserm.frBeaver, RonRosa & Co.rbeaver@rosaandco.comBender, BrendanGenentech, Inc.bbender@gene.comBennetts, MargheritaPfizermeg.bennetts@pfizer.comBergman, ArthurMerckarthur_bergman@merck.comBergsma, TimMetrum Research Group / Metrum Institutetimb@metrumrg.comBergstrand, MartinUppsala Universitymartin.bergstrand@farmbio.uu.seBerry, SethQuintilesseth.berry@quintiles.comBetts, AlisonPfizeralison.betts@pfizer.comBhasi, KavithaAllergankbhasi@gmail.comBies, RobertIndiana Universityrobertbies@yahoo.comBihorel, SebastienCognigen CorporationSebastien.Bihorel@cognigencorp.comBirnbaum, AngelaUniversity of Minnesotabirnb002@umn.eduBoni, JosephWyeth Researchbonij@wyeth.comBosley, JimRosa & Co.jbosley@rosaandco.comBoucher, JosephPfizerjoseph.f.boucher@pfizer.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Baverel, Paul         | Uppsala University                      | paul.baverel@farmbio.uu.se   |
| Bender, Brendan Genentech, Inc. bbender@gene.com Bennetts, Margherita Pfizer meg.bennetts@pfizer.com Bergman, Arthur Merck arthur_bergman@merck.com Bergsma, Tim Metrum Research Group / Metrum Institute timb@metrumrg.com Bergstrand, Martin Uppsala University martin.bergstrand@farmbio.uu.se Berry, Seth Quintiles seth.berry@quintiles.com Betts, Alison Pfizer alison.betts@pfizer.com Bhasi, Kavitha Allergan kbhasi@gmail.com Bies, Robert Indiana University robertbies@yahoo.com Bihorel, Sebastien Cognigen Corporation Sebastien.Bihorel@cognigencorp.com Birnbaum, Angela University of Minnesota birnb002@umn.edu Boni, Joseph Wyeth Research bonij@wyeth.com Bosley, Jim Rosa & Co. jbosley@rosaandco.com Boucher, Joseph Pfizer joseph.f.boucher@pfizer.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bazzoli, Caroline     |                                         | caroline.bazzoli@inserm.fr   |
| Bender, BrendanGenentech, Inc.bbender@gene.comBennetts, MargheritaPfizermeg.bennetts@pfizer.comBergman, ArthurMerckarthur_bergman@merck.comBergsma, TimMetrum Research Group / Metrum Institutetimb@metrumrg.comBergstrand, MartinUppsala Universitymartin.bergstrand@farmbio.uu.seBerry, SethQuintilesseth.berry@quintiles.comBetts, AlisonPfizeralison.betts@pfizer.comBhasi, KavithaAllergankbhasi@gmail.comBies, RobertIndiana Universityrobertbies@yahoo.comBihorel, SebastienCognigen CorporationSebastien.Bihorel@cognigencorp.comBirnbaum, AngelaUniversity of Minnesotabirnb002@umn.eduBoni, JosephWyeth Researchbonij@wyeth.comBosley, JimRosa & Co.jbosley@rosaandco.comBoucher, JosephPfizerjoseph.f.boucher@pfizer.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Beaver, Ron           | Rosa & Co.                              | rbeaver@rosaandco.com        |
| Bennetts, MargheritaPfizermeg.bennetts@pfizer.comBergman, ArthurMerckarthur_bergman@merck.comBergsma, TimMetrum Research Group / Metrum Institutetimb@metrumrg.comBergstrand, MartinUppsala Universitymartin.bergstrand@farmbio.uu.seBerry, SethQuintilesseth.berry@quintiles.comBetts, AlisonPfizeralison.betts@pfizer.comBhasi, KavithaAllergankbhasi@gmail.comBies, RobertIndiana Universityrobertbies@yahoo.comBihorel, SebastienCognigen CorporationSebastien.Bihorel@cognigencorp.comBirnbaum, AngelaUniversity of Minnesotabirnb002@umn.eduBoni, JosephWyeth Researchbonij@wyeth.comBosley, JimRosa & Co.jbosley@rosaandco.comBoucher, JosephPfizerjoseph.f.boucher@pfizer.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bender, Brendan       | Genentech, Inc.                         |                              |
| Bergsma, Tim Metrum Research Group / Metrum Institute timb@metrumrg.com Bergstrand, Martin Uppsala University martin.bergstrand@farmbio.uu.se Berry, Seth Quintiles seth.berry@quintiles.com Betts, Alison Pfizer alison.betts@pfizer.com Bhasi, Kavitha Allergan kbhasi@gmail.com Bies, Robert Indiana University robertbies@yahoo.com Bihorel, Sebastien Cognigen Corporation Sebastien.Bihorel@cognigencorp.com Birnbaum, Angela University of Minnesota birnb002@umn.edu Boni, Joseph Wyeth Research bonij@wyeth.com Bosley, Jim Rosa & Co. jbosley@rosaandco.com Boucher, Joseph Pfizer joseph.f.boucher@pfizer.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bennetts, Margherita  | Pfizer                                  |                              |
| Bergsma, Tim Metrum Research Group / Metrum Institute timb@metrumrg.com Bergstrand, Martin Uppsala University martin.bergstrand@farmbio.uu.se Berry, Seth Quintiles seth.berry@quintiles.com Betts, Alison Pfizer alison.betts@pfizer.com Bhasi, Kavitha Allergan kbhasi@gmail.com Bies, Robert Indiana University robertbies@yahoo.com Bihorel, Sebastien Cognigen Corporation Sebastien.Bihorel@cognigencorp.com Birnbaum, Angela University of Minnesota birnb002@umn.edu Boni, Joseph Wyeth Research bonij@wyeth.com Bosley, Jim Rosa & Co. jbosley@rosaandco.com Boucher, Joseph Pfizer joseph.f.boucher@pfizer.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ·                     | Merck                                   | <u> </u>                     |
| Bergstrand, Martin Uppsala University martin.bergstrand@farmbio.uu.se Berry, Seth Quintiles seth.berry@quintiles.com Betts, Alison Pfizer alison.betts@pfizer.com Bhasi, Kavitha Allergan kbhasi@gmail.com Bies, Robert Indiana University robertbies@yahoo.com Bihorel, Sebastien Cognigen Corporation Sebastien.Bihorel@cognigencorp.com Birnbaum, Angela University of Minnesota birnb002@umn.edu Boni, Joseph Wyeth Research bonij@wyeth.com Bosley, Jim Rosa & Co. jbosley@rosaandco.com Boucher, Joseph Pfizer joseph.f.boucher@pfizer.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                                         |                              |
| Berry, Seth Quintiles seth.berry@quintiles.com Betts, Alison Pfizer alison.betts@pfizer.com Bhasi, Kavitha Allergan kbhasi@gmail.com Bies, Robert Indiana University robertbies@yahoo.com Bihorel, Sebastien Cognigen Corporation Sebastien.Bihorel@cognigencorp.com Birnbaum, Angela University of Minnesota birnb002@umn.edu Boni, Joseph Wyeth Research bonij@wyeth.com Bosley, Jim Rosa & Co. jbosley@rosaandco.com Boucher, Joseph Pfizer joseph.f.boucher@pfizer.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u>              | 1                                       |                              |
| Betts, Alison Pfizer alison.betts@pfizer.com Bhasi, Kavitha Allergan kbhasi@gmail.com Bies, Robert Indiana University robertbies@yahoo.com Bihorel, Sebastien Cognigen Corporation Sebastien.Bihorel@cognigencorp.com Birnbaum, Angela University of Minnesota birnb002@umn.edu Boni, Joseph Wyeth Research bonij@wyeth.com Bosley, Jim Rosa & Co. jbosley@rosaandco.com Boucher, Joseph Pfizer joseph.f.boucher@pfizer.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | **                                      | •                            |
| Bhasi, Kavitha Allergan kbhasi@gmail.com Bies, Robert Indiana University robertbies@yahoo.com Bihorel, Sebastien Cognigen Corporation Sebastien.Bihorel@cognigencorp.com Birnbaum, Angela University of Minnesota birnb002@umn.edu Boni, Joseph Wyeth Research bonij@wyeth.com Bosley, Jim Rosa & Co. jbosley@rosaandco.com Boucher, Joseph Pfizer joseph.f.boucher@pfizer.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |                                         |                              |
| Bies, Robert Indiana University robertbies@yahoo.com Bihorel, Sebastien Cognigen Corporation Sebastien.Bihorel@cognigencorp.com Birnbaum, Angela University of Minnesota birnb002@umn.edu Boni, Joseph Wyeth Research bonij@wyeth.com Bosley, Jim Rosa & Co. jbosley@rosaandco.com Boucher, Joseph Pfizer joseph.f.boucher@pfizer.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | Allergan                                | <u> </u>                     |
| Bihorel, Sebastien Cognigen Corporation Sebastien.Bihorel@cognigencorp.com Birnbaum, Angela University of Minnesota birnb002@umn.edu Boni, Joseph Wyeth Research bonij@wyeth.com Bosley, Jim Rosa & Co. jbosley@rosaandco.com Boucher, Joseph Pfizer joseph.f.boucher@pfizer.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       | -                                       | ୍ର                           |
| Birnbaum, Angela University of Minnesota birnb002@umn.edu  Boni, Joseph Wyeth Research bonij@wyeth.com  Bosley, Jim Rosa & Co. jbosley@rosaandco.com  Boucher, Joseph Pfizer joseph.f.boucher@pfizer.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       | ž                                       |                              |
| Boni, JosephWyeth Researchbonij@wyeth.comBosley, JimRosa & Co.jbosley@rosaandco.comBoucher, JosephPfizerjoseph.f.boucher@pfizer.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,                     |                                         | 9 9 9 1                      |
| Bosley, Jim Rosa & Co. jbosley@rosaandco.com Boucher, Joseph Pfizer joseph.f.boucher@pfizer.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                         | <u> </u>                     |
| Boucher, Joseph Pfizer joseph.f.boucher@pfizer.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       | ·                                       | • •                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • •                   |                                         |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , 1                   |                                         |                              |

| Boyd, Rebecca                 | Pfizer                                      | rebecca.boyd@pfizer.com             |
|-------------------------------|---------------------------------------------|-------------------------------------|
| Brandquist, Christine         | MDS Pharma Services                         | cbrandquist@yahoo.com               |
| Brar, Satjit                  | FDA                                         | satjit.brar@fda.hhs.gov             |
| Brundage, Dianne              | Methodist Hospital                          | brundd@parknicollet.com             |
| Brundage, Dick                | University of Minnesota                     | brund001@umn.edu                    |
| Bruno, Rene                   | Pharsight                                   | rbruno@pharsight.com                |
| Budha, Nageshwar              | Genentech, Inc.                             | budha.nageshwar@gene.com            |
| Bulitta, Jürgen               | Ordway Research Institute                   | jbulitta@ordwayresearch.org         |
| Bulychev, Alexey              | Millennium Pharmaceuticals                  | bulychev@mpi.com                    |
| Byon, Wonkyung                | Pfizer                                      | wonkyung.byon@pfizer.com            |
| Cadieu, Kent                  | KDC Group, Inc.                             | kdcgrp@placementgrp.com             |
| Carrothers, TJ                | Pharsight                                   | tcarrothers@pharsight.com           |
| Chae, Hongseok                | Catholic university                         | kbilling@catholic.ac.kr             |
| Chan, Hui Min                 | BMSR, University of Southern California     | huichan@usc.edu                     |
| Chanu, Pascal                 | Pharsight                                   | Ŭ                                   |
|                               | A2PG - Ann Arbor Pharmacometrics Group      | pchanu@pharsight.com                |
| Chapel, Sunny                 |                                             | sunny.chapel@a2pg.com               |
| Charabia Tina                 | Cubist Pharmaceuticals Pfizer               | ajit.chavan@cubist.com              |
| Checchio, Tina                |                                             | tina.m.checchio@pfizer.com          |
| Chen, Chunlin                 | Medimmune/University de Montreal            | chench@medimmune.com                |
| Chen, Danny                   | Pfizer                                      | danny.chen@pfizer.com               |
| Chew, Marci                   | Pfizer                                      | marci.l.chew@pfizer.com             |
| Chittenden, Jason             | Pharsight                                   | jchittenden@pharsight.com           |
| Chiu, Joannellyn              | GlaxoSmithKline                             | joannellyn.s.chiu@gsk.com           |
| Chiu, Yu-Yuan                 | Dainippon Sumitomo Pharma America           | ychiu@dsp-a.com                     |
| Chu, Hui-May                  | Anoixis Corporation                         | hui-may_chu@anoixiscorp.com         |
| Cirincione, Brenda            | Amylin Pharmaceuticals                      | brenda.cirincione@amylin.com        |
| Claret, Laurent               | Pharsight                                   | lclaret@wanadoo.fr                  |
| Colucci, Philippe             | University of Montreal                      | philippe.colucci@cetero.com         |
| Comisar, Craig                | Children's Hospital of Philadelphia         | comisarc@email.chop.edu             |
| Cook, Jack                    | Pfizer                                      | jack.cook@pfizer.com                |
| Corrigan, Brian               | Pfizer                                      | brian.corrigan@pfizer.com           |
| Cronenberger, Carol           | Pfizer                                      | carol.cronenberger@pfizer.com       |
| Danhof, Meindert              | Leiden University                           | m.danhof@lacdr.leidenuniv.nl        |
| D'Argenio, David              | University of Southern California           | dargenio@bmsr.usc.edu               |
| Dartois, Celine               | Novartis                                    | celine.dartois@novartis.com         |
| Deng, Rong                    | Genentech, Inc.                             | deng.rong@gene.com                  |
| Derendorf, Hartmut            | University of Florida                       | hartmut@cop.ufl.edu                 |
| Diderichsen,<br>Paul Matthias | Abbott GmbH & Co, KG                        | paulmatthias.diderichsen@abbott.com |
| Dirks, Nathaniel              | Metrum Research Group / Metrum Institute    | nated@metrumrg.com                  |
| Dontabhaktuni, Aruna          | Imclone Systems                             | arunadonta@yahoo.com                |
| Doshi, Sameer                 | Amgen Inc.                                  | sdoshi@amgen.com                    |
| Drenth, Henk-Jan              | LAP&P Consultants BV                        | h.drenth@lapp.nl                    |
| Dubois, Anne                  | INSERM U738                                 | anne.dubois@inserm.fr               |
| Dumond, Julie                 | University of North Carolina at Chapel Hill | jdumond@unc.edu                     |
| Dunlavey, Michael             | Pharsight                                   | mdunlavey@pharsight.com             |
| Dunyak, James                 | Novartis                                    | james.dunyak@novartis.com           |
| Dutta, Sandeep                | Abbott Laboratories                         | sandeep.dutta@abbott.com            |
| Dykstra, Kevin                | Pharsight                                   | kdykstra@pharsight.com              |
|                               | School of Pharmacy,                         |                                     |
| Edginton, Andrea              | University of Waterloo                      | aedginto@uwaterloo.ca               |

| El-Tahtawy, Ahmed      | Pfizer                                         | ahmed.el-tahtawy@pfizer.com         |
|------------------------|------------------------------------------------|-------------------------------------|
| Estes, Kerry           | PK-PDyne, Inc                                  | pkpdyne@attglobal.net               |
| Ette, Ene              | Anoixis Corporation                            | ene ette@anoixiscorp.com            |
| Ezzet, Farkad          | Pharsight                                      | fezzet@pharsight.com                |
| Facius, Axel           | Nycomed                                        | axel.facius@nycomed.com             |
| Faessel, Helene        | Pfizer                                         | helene.m.faessel@pfizer.com         |
| Fenneteau, Frédérique  | Université de Montréal,<br>Faculty of Pharmacy | frederique.fenneteau@polymtl.ca     |
| Ferron, Geraldine      | sanofi-aventis                                 | geraldine.ferron@sanofi-aventis.com |
| Fetterly, Gerald       | Roswell Park Cancer Institute                  | gerald.fetterly@roswellpark.org     |
| Fiedler-Kelly, Jill    | Cognigen Corporation                           | jill.fiedler-kelly@cognigencorp.com |
| Fisher, Dennis         | P Less Than                                    | fisher@plessthan.com                |
| Fisher, Jeannine       | Metrum Research Group, LLC                     | jeanninf@metrumrg.com               |
| Flataos, Demiana       | FDA                                            | faltaosd@cder.fda.gov               |
| Forrest, Alan          | ICPD-Ordway Research Institute                 | aforrest-icpd@ordwayresearch.org    |
| Freedman, Immanuel     | GlaxoSmithKine                                 | immanuel.q.freedman@gsk.com         |
| Freiwald, Matthias     | Boehringer Ingelheim                           | matthias.freiwald@boehringer-       |
|                        |                                                | ingelheim.com                       |
| French, Jonathan       | Pfizer                                         | jonathan.l.french@pfizer.com        |
| Freshwater, Ed         | Long Island University                         | edfreshwater3636@aol.com            |
| Freshwater, Tomoko     | Schering-Plough                                | tomoko.freshwater@spcorp.com        |
| Frevert, Uli           | Bristol-Myers Squibb                           | uli.frevert@bms.com                 |
| Frey, Nicolas          | F. Hoffmann-La Roche                           | nicolas.frey@roche.com              |
| Friberg, Lena          | Uppsala University                             | lena.friberg@farmbio.uu.se          |
| Gao, Xiang             | Pfizer                                         | xiang.gao@pfizer.com                |
| Garhyan, Parag         | Eli Lilly and Company                          | pgarhyan@lilly.com                  |
| Garimella, Tushar      | Abbott Laboratories                            | tushar.garimella@abbott.com         |
| Garnett, Christine     | FDA                                            | christine.garnett@fda.hhs.gov       |
| Gastonguay, Marc       | Metrum Research Group / Metrum Institute       | marcg@metrumrg.com                  |
| Gaudreault, Francois   | Université de Montréal,<br>Faculty of Pharmacy | francois.gaudreault@umontreal.ca    |
| Ghahramani, Parviz     | Forest Research Institute                      | parvizghahramani@hotmail.com        |
| Ghobrial, Oliver       | Eli Lilly and Company                          | oliver1@ufl.edu                     |
| Gibiansky, Ekaterina   | QuantPharm LLC                                 | EGibiansky@quantpharm.com           |
| Gibiansky, Leonid      | QuantPharm LLC                                 | lgibiansky@quantpharm.com           |
| Gillespie, Bill        | Metrum Research Group / Metrum Institute       | billg@metrumrg.com                  |
| Girgis, Ihab           | Johnson and Johnson PRD                        | igirgis@its.jnj.com                 |
| Godfrey, CJ            | Anoixis Corporation                            | cj_godfrey@anoixiscorp.com          |
| Goel, Varun            | University of Minnesota                        | goel0032@umn.edu                    |
| Goggin, Timothy        | F. Hoffmann-La Roche                           | timothy.goggin@roche.com            |
| Gomeni, Roberto        | GlaxoSmithKine                                 | roberto.a.gomeni@gsk.com            |
| Grasela, Thaddeus      | Cognigen Corporation                           | ted.grasela@cognigencorp.com        |
| Green, Michelle        | Pharsight                                      | mgreen@pharsight.com                |
| Grover, Anita          | UCSF                                           | anita.grover@ucsf.edu               |
| Grueger, Jens          | Pfizer                                         | jens.grueger@pfizer.com             |
| Gupta, Manish          | Genentech, Inc.                                | manishg@gene.com                    |
| Gupta, Neeraj          | Abbott Laboratories                            | neeraj.gupta@abbott.com             |
| Gupta, Pankaj          | Pfizer                                         | pankaj.gupta@pfizer.com             |
| Haddish-Berhane, Nahor | Pfizer                                         | nahor.haddish-berhane@pfizer.com    |
| Hall, Jeff             | Metrum Research Group / Metrum Institute       | jeffhall@metrumrg.com               |
| Han, Seunghoon         | Catholic Medical Center                        | waystolove@catholic.ac.kr           |

| Hane, Jeff            | Metrum Research Group / Metrum Institute | jeffh@metrumrg.com                |
|-----------------------|------------------------------------------|-----------------------------------|
| Hang, Yaming          | Merck                                    | yaming_hang@merck.com             |
| Hansson, Emma         | Uppsala University                       | emma.hansson@farmbio.uu.se        |
| Harnisch, Lutz        | Pfizer                                   | lutz.o.harnisch@pfizer.com        |
| Harrold, John         | SUNY at Buffalo                          | jharrold@buffalo.edu              |
| Hazra-Raybon, Anasuya | Pfizer                                   | anasuya.hazra@pfizer.com          |
| Heathman, Michael     | Lilly Research Laboratories              | heathman@lilly.com                |
| Heilig, Joseph        | Amylin Pharmaceuticals                   | joseph.heilig@amylin.com          |
| Heitjan, Daniel       | University of Pennsylvania               | dheitjan@upenn.edu                |
| Helmlinger, Gabriel   | Novartis                                 | gabriel.helmlinger@novartis.com   |
| Henin, Emilie         | Uppsala University                       | emilie.henin@farmbio.uu.se        |
| Henry, Ana            | Pharsight                                | ahenry@pharsight.com              |
| Hermann, David        | Great Lakes Drug Development, Inc        | dhermann@gldrugdev.com            |
| Ho, Richard           | Entelos                                  | ho@entelos.com                    |
| Hoke, Frank           | GlaxoSmithKline                          | frank.j.hoke@gsk.com              |
| Hooker, Andrew        | Uppsala University                       | andrew.hooker@farmbio.uu.se       |
| Hou, Xiaoli Shirley   | Merck                                    | xiaoli hou@merck.com              |
| Housand, Conrad       |                                          |                                   |
|                       | The AEgis Technologies Group             | lhousand@aegistg.com              |
| Hovde, Mark           | Pharsight                                | mhovde@pharsight.com              |
| Hsu, Chyi-Hung        | Novartis                                 | chyihung.hsu@novartis.com         |
| Hsu, Joy              | F. Hoffmann-La Roche                     | joy.hsu@roche.com                 |
| Huang, Jiayin         | Vertex Pharmaceuticals                   | jiayin_huang@vrtx.com             |
| Hutmacher, Matthew    | A2PG - Ann Arbor Pharmacometrics Group   | matt.hutmacher@a2pg.com           |
| Ingwersen, Steen      | NovoNordisk/Biomodelling                 | si@novonordisk.com                |
| Ito, Kaori            | Pfizer                                   | kaori.ito@pfizer.com              |
| Ivaturi, Vijay Deep   | University of Minnesota                  | ivatu001@umn.edu                  |
| Jadhav, Pravin        | FDA                                      | pravin.jadhav@fda.hhs.gov         |
| James, David          | Novartis                                 | davida.james@novartis.com         |
| James, John           | Mango Solutions                          | jjames@mango-solutions.com        |
| Jang, In-Jin          | Seoul National University                | ijjang@snu.ac.kr                  |
| Jang, Seong Bok       | Yonsei University College of Medicine    | sbjang83@yuhs.ac                  |
| Jansen, Mendel        | Eisai Medical Research Inc.              | mendel_jansen@eisai.net           |
| Jaworowicz, David     | Cognigen Corporation                     | David.Jaworowicz@cognigencorp.com |
| Jen, Frank            | Pfizer                                   | frank_jen@hotmail.com             |
| Jennings, Donald      | Eli Lilly and Company                    | donald.jennings@lilly.com         |
| Jin, Jin              | Genentech, Inc.                          | jinj@gene.com                     |
| Jonsson, Niclas       | Exprimo nv                               | niclas.jonsson@exprimo.com        |
| Joshi, Amita          | Genentech, Inc.                          | amita@gene.com                    |
| Kahn, Joseph          | Novartis                                 | joseph.kahn@novartis.com          |
| Kaibara, Astunori     | Astellas Pharma Global Development, Inc  | atsunori.kaibara@us.astellas.com  |
| Kaila, Nitin          | Novartis                                 | nitin.kaila@novartis.com          |
| Kamal, Mohamed        | Roche                                    | mohamed.kamal@roche.com           |
| Karlsson, Kristin     | Uppsala University                       | kristin.karlsson@farmbio.uu.se    |
| Karlsson, Mats        | Uppsala University                       | mats.karlsson@farmbio.uu.se       |
| Kastrissios, Helen    | Pharsight                                | hkastrissios@pharsight.com        |
| Kerbusch, Thomas      | Schering-Plough                          | thomas.kerbusch@spcorp.com        |
| Kern, Steven          | University of Utah                       | steven.kern@utah.edu              |
| Khariton, Tatiana     | Forest Research Institute                | tatiana.khariton@frx.com          |
| Khatri, Amit          | University of Minnesota                  | khat0025@umn.edu                  |
| Khurana, Manoj        | US Food and Drug Administation           | manoj.khurana@fda.hhs.gov         |
| ixiiuiaiia, ivialioj  | 05 1 000 and Drug Administration         | manoj.knaranawida.iiiis.gov       |

| Kim, Hyewon             | University of Minnesota                        | kimxx987@umn.edu                  |
|-------------------------|------------------------------------------------|-----------------------------------|
| Kim, Tae Eun            | University of North Carolina at Chapel Hill    | taeeun.grace@gmail.com            |
| Kim, Yoon               | Dankook University                             | kyg90@dankook.ac.kr               |
| Kimberlin, Oliver       | Mango Solutions                                | okimberlin@mango-solutions.com    |
| Kimko, Hui              | Johnson and Johnson PRD                        | hkimko@its.jnj.com                |
| King, Jennifer          | University of Alabama at Birmingham            | jennifer.king@ccc.uab.edu         |
| Kitchen, Valerie        | Bristol Myers Squibb                           | valerie.kitchen@bms.com           |
| Knebel, Bill            | Metrum Research Group / Metrum Institute       | billk@metrumrg.com                |
| Korth-Bradley, Joan     | Wyeth Research                                 | korthbj@wyeth.com                 |
| Kowalski, Kenneth       | A2PG - Ann Arbor Pharmacometrics Group         | ken.kowalski@a2pg.com             |
| Krause, Andreas         | Actelion Pharmaceuticals                       | andreas.krause@actelion.com       |
| Krishnaswami, Sriram    | Pfizer                                         | sriram.krishnaswami@pfizer.com    |
| Krudys, Kevin           | FDA                                            | kevin.krudys@fda.hhs.gov          |
| Krzyzanski, Wojciech    | University at Buffalo                          | wk@buffalo.edu                    |
| Kumar, Vikas            | Pfizer                                         | vikas.kumar@pfizer.com            |
| Lala, Mallika           | FDA                                            | mallika.lala@fda.hhs.gov          |
| Lalonde, Richard        | Pfizer                                         | richard.lalonde@pfizer.com        |
| Lalovic, Bojan          | Pfizer                                         | bojan.lalovic@pfizer.com          |
| Lamba, Manisha          | Pfizer                                         | manisha.lamba@pfizer.com          |
|                         |                                                | CLandersdorfer-                   |
| Landersdorfer, Cornelia | Institute for Clinical Pharmacodynamics        | icpd@ordwayresearch.org           |
| Langdon, Grant          | Pfizer                                         | grant.m.langdon@gmail.com         |
| Lavielle, Marc          | INRIA                                          | marc.lavielle@math.u-psud.fr      |
| Lavigne, Jean           | MDS Pharma Services                            | jean.lavigne@mdsinc.com           |
| Le, Kha                 | Millennium Pharmaceuticals                     | kha.le@mpi.com                    |
| Leary, Robert           | Pharsight                                      | bleary@pharsight.com              |
| Lee, Joo-Yeon           | FDA                                            | jooyeon2.lee@fda.hhs.gov          |
| Lee, Yoon Jung          | Yonsei University College of Medicine          | yjlee@yuhs.ac                     |
| Leggas, Markos          | University of Kentucky                         | mark.leggas@uky.edu               |
| Leil, Tarek             | Bristol-Myers Squibb                           | tarek.leil@bms.com                |
| Levi, Micha             | F. Hoffmann-La Roche                           | micha.levi@roche.com              |
| Li, Fang                | FDA                                            | fang.li@fda.hhs.gov               |
| Li, Hanbin              | Quantitative Solutions                         | hli@wequantify.com                |
| Li, Jianguo             | AstraZeneca                                    | jianguo.li@astrazeneca.com        |
| Li, Jun                 | Université de Montréal                         | li@crm.umontreal.ca               |
| Li, Xiujiang            | Merck Research Labs                            | xiujiang li@merck.com             |
| Lim, Lay Ahyoung        | Yonsei University College of Medicine          | MADPINK@yuhs.ac                   |
| Lindbom, Lars           | Pharsight                                      | llindbom@pharsight.com            |
| Lippert, Joerg          | Bayer Technology Services GmbH                 | joerg.lippert@bayertechnology.com |
| Liu, Feng               | University of Sheffield / GSK                  | fenglpku2000@gmail.com            |
| Liu, Jiang              | FDA                                            | jiang.liu@fda.hhs.gov             |
| Liu, Jing               | Pfizer                                         | jing.liu@pfizer.com               |
| Liu, Wei                | Abbott Laboratories                            | wei.liu@abbott.com                |
| Lo, Arthur              | Entelos                                        | lo@entelos.com                    |
| Lockwood, Peter         | Pfizer                                         | peter.lockwood@pfizer.com         |
| Lopez-Anaya, Arturo     | Eisai Medical Research Inc.                    | arturo_lopez-anaya@eisai.com      |
| Lovern, Mark            | GlaxoSmithKine                                 | mark.r.lovern@gsk.com             |
| Lu, Dan                 | Genentech, Inc.                                | danlu@gene.com                    |
| Lu, Jianfeng            | Amgen Inc.                                     | jianfeng@amgen.com                |
|                         |                                                |                                   |
| Lu, Tong<br>Lu, Yasong  | BMSR, University of Southern California Pfizer | tonglu@usc.edu                    |
| Lu, I asolig            | 1 11201                                        | yasong.lu@pfizer.com              |

| Lu, Zheng                      | Millennium Pharmaceuticals               | zheng.lu@mpi.com                       |
|--------------------------------|------------------------------------------|----------------------------------------|
| Lubin, Rachelle                | University at Buffalo/Novartis           | rachelle.lubin@novartis.com            |
|                                | Pharmaceuticals                          | <u> </u>                               |
| Ludden, Thomas                 | ICON Development Solutions               | thomas.ludden@iconplc.com              |
| Ludwig, Elizabeth              | Cognigen Corporation                     | Elizabeth.Ludwig@cognigencorp.com      |
| Luu, Kenneth                   | Pfizer                                   | kenneth.luu@pfizer.com                 |
| Ma, Peiming                    | Amgen Inc.                               | peimingm@amgen.com                     |
| Madabushi, Rajanikanth         | FDA                                      | rajnikanth.madabushi@fda.hhs.gov       |
| Mager, Donald                  | University at Buffalo, SUNY              | dmager@buffalo.edu                     |
| Mandema, Jacob                 | Quantitative Solutions                   | jmandema@wequantify.com                |
| Marathe, Anshu                 | FDA                                      | anshu.marathe@fda.hhs.gov              |
| Marsan, Jim                    | Metrum Research Group / Metrum Institute | jimm@metrumrg.com                      |
| Marsteller, Douglas            | The Children's Hospital of Philadelphia  | marstellerd@email.chop.edu             |
| Marston, Sarah                 | Otsuka Pharmaceutical Dev. & Comm        | sarah.marston@otsuka-us.com            |
| Mattison, Donald               | NICHD, NIH                               | mattisod@mail.nih.gov                  |
| Mayersohn, Michael             | University of Arizona                    | mayersohn@pharmacy.arizona.edu         |
| McDougall, Robin               | The AEgis Technologies Group             | rmcdougall@acslx.com                   |
| Mehrotra, Nitin                | FDA                                      | nitin.mehrotra@fda.hhs.gov             |
| Meibohm, Bernd                 | University of Tennessee                  | bmeibohm@utmem.edu                     |
| Meng, Zhaoyu                   | the Chinese University of Hong Kong      | zhaoyumeng@cuhk.edu.hk                 |
| Menon, Sujatha                 | Pfizer                                   | suja.menon@pfizer.com                  |
| Mentre, France                 | INSERM U738                              | france.mentre@inserm.fr                |
| Miller, Raymond                | Pfizer                                   | raymond.miller@pfizer.com              |
| Milligan, Peter                | Pfizer                                   | peter.a.milligan@pfizer.com            |
| Mondick, John                  | Metrum Research Group / Metrum Institute | johnm@metrumrg.com                     |
| Moore, Helen                   | Pharsight                                | hmoore@pharsight.com                   |
| Mouksassi, Samer               | Pharsight                                | smouksassi@pharsight.com               |
| Mould, Diane                   | Projections Research Inc                 | drmould@attglobal.net                  |
| Moy, Fred                      | New York Medical College                 | moy@nymc.edu                           |
| Mu, Song                       | F. Hoffmann-La Roche                     | song.mu@roche.com                      |
| Naganuma, Hideo                | Daiichi-Sankyo Co., Ltd.                 | naganuma.hideo.eb@daiichisankyo.co.jp  |
| Nakade, Susumu                 | Ono Pharma USA, Inc.                     | s.nakade@ono.co.jp                     |
| Nandy, Partha                  | Johnson and Johnson PRD                  | pnandy@its.jnj.com                     |
| Narwal, Rajesh                 | MedImmune                                | narwalr@medimmune.com                  |
| Neal, Lauren                   | FDA                                      | lauren.neal@fda.hhs.gov                |
| Nebot, Noelia                  | University of North Carolina/GSK         | noelia nebot@unc.edu                   |
| Neelakantan, Srividya          | Pfizer                                   | srividya.neelakantan@pfizer.com        |
| Nekka, Fahima                  | Université de Montréal                   | fahima.nekka@umontreal.ca              |
| Nestorov, Ivan                 | Biogen IDEC                              | ivan.nestorov@biogenidec.com           |
| Ng, Chee                       | Bristol-myers Squibb                     | chee.ng@bms.com                        |
| Nguyen, Anne Q.N.              | Université de Montréal                   | qna.nguyen@umontreal.ca                |
|                                | INSERM U738                              | 1 <b>0</b> 1 0                         |
| Nguyen, Thu-Thuy Nicholas, Tim | Pfizer                                   | thu-thuy.nguyen@inserm.fr              |
| ·                              |                                          | timothy.nicholas@pfizer.com            |
| Nichols, Alice                 | Wyeth Research                           | nichola2@wyeth.com                     |
| Nickens, Dana                  | Pfizer                                   | dana.j.nickens@pfizer.com              |
| Nieforth, Keith                | Roche                                    | keith.neiforth@roche.com               |
| Nucci, Gianluca                | Pfizer                                   | gianluca.nucci@pfizer.com              |
| Nyberg, Joakim                 | Uppsala University                       | joakim.nyberg@farmbio.uu.se            |
| O'Connell, Michael             | TIBCO Software, Inc Spotfire Division    | moconnel@tibco.com                     |
| OGorman, Melissa               | Pfizer                                   | melissa.t.ogorman@pfizer.com           |
| Okudaira, Noriko               | Daiichi Sankyo Co., Ltd.                 | okudaira.noriko.ra@daiichisankyo.co.jp |

| Okusanya, Olanrewaju                     | Institute for Clinical Pharmacodynamics  | Ookusanya-icpd@ordwayresearch.org     |
|------------------------------------------|------------------------------------------|---------------------------------------|
| Ouellet, Daniele                         | GlaxoSmithKine                           | daniele.x.ouellet@gsk.com             |
| Pagano, Sharon                           | Entelos                                  | pagano@entelos.com                    |
| Panetta, Carl                            | St. Jude Children's Research Hospital    | carl.panetta@stjude.org               |
| Panorchan, Porntula                      | Merck                                    | porntula panorchan@merck.com          |
| Papasouliotis, Orestis                   | Merck Serono S.A.                        | orestis.papasouliotis@merckserono.net |
| Park, Kyungsoo                           | Yonsei University College of Medicine    | kspark@yuhs.ac                        |
| Pelekis, Michael                         | Simulations Plus, Inc.                   | michael@simulations-plus.com          |
| Pereira, Luis                            | CHB/HMS                                  | luis.pereira@childrens.harvard.edu    |
| Peterson, Mark                           | Biogen IDEC                              | mark.peterson@biogenidec.com          |
| Petersson, Klas                          | Uppsala University                       | klas.petersson@farmbio.uu.se          |
| Pfister, Marc                            | Bristol Myers Squibb                     | marc.pfister@bms.com                  |
| Phillips, Luann                          | Cognigen Corporation                     | Luann.Phillips@cognigencorp.com       |
| Plan, Elodie                             | Uppsala University                       | elodie.plan@farmbio.uu.se             |
| Ploeger, Bart                            | LAP&P Consultants BV                     | b.ploeger@lapp.nl                     |
| Plowchalk, David                         | Pfizer                                   | david.r.plowchalk@pfizer.com          |
| Poland, William                          | Pharsight                                | bpoland@pharsight.com                 |
| Polepally, Akshanth                      | University of Minnesota                  | polep002@umn.edu                      |
| Poola, Nagaraju                          | Dainippon Sumitomo Pharma America        | npoola@dsp-a.com                      |
| Pugh, Richard                            | Mango Solutions                          | rich@mango-solutions.com              |
| Purohit, Vivek                           | Pfizer                                   | vivek.s.purohit@pfizer.com            |
| Qiu, Ruolun                              | Pfizer                                   | ruolun.qiu@pfizer.com                 |
| Quartino, Angelica                       | Uppsala University                       | angelica.quartino@farmbio.uu.se       |
| Quinlan, Tonya                           | Eli Lilly and Company                    | quinlan_tonya@lilly.com               |
| Rajagopalan, Prabhu                      | Bayer HealthCare Pharmaceuticals         | prabhu.rajagopalan@bayer.com          |
|                                          | Wyeth Research                           | rajes@wyeth.com                       |
| Raje, Sangeeta<br>Ramakrishna, Ramprasad | Novartis                                 | ramprasad.ramakrishna@novartis.com    |
| Ravva, Patanjali                         | Pfizer                                   | patanjali.ravva@pfizer.com            |
| •                                        |                                          |                                       |
| Raybon, Joseph                           | Bristol-Myers-Squibb                     | joseph.raybon@bms.com                 |
| Reyderman, Larisa                        | Eisai Medical Research Inc. Pfizer       | larisa_reyderman@eisai.com            |
| Ribbing, Jakob                           |                                          | jakob.ribbing@pfizer.com              |
| Riggs, Matthew                           | Metrum Research Group / Metrum Institute | mattr@metrumrg.com                    |
| Riley, Steve                             | Pfizer                                   | steve.riley@pfizer.com                |
| Ring, Arne                               | Boehringer Ingelheim Pharma              | arne.ring@boehringer-ingelheim.com    |
| Risch, Nancy                             | Pharsight Living CN of Co. 17            | nrisch@pharsight.com                  |
| Rizwan, Ahsan                            | University of North Carolina             | ahsan.rizwan@unc.edu                  |
| Robbie, Gabriel                          | MedImmune                                | robbieg@medimmune.com                 |
| Roberts, John                            | AstraZeneca                              | john.roberts@astrazeneca.com          |
| Rogers, Jim                              | Metrum Research Group / Metrum Institute | jimr@metrumrg.com                     |
| Romero, Klaus                            | The Critical Path Institute              | kromero@c-path.org                    |
| Roy, Amit                                | Bristol Myers Squibb                     | amit.roy@bms.com                      |
| Roy, Mike                                | Astellas Pharma Global Development, Inc  | mike.roy@us.astellas.com              |
| Rubino, Christopher                      | Institute for Clinical Pharmacodynamics  | Crubino-icpd@ordwayresearch.org       |
| Rutkin, Adam                             | Pharsight                                | arutkin@pharsight.com                 |
| Sabarinath, Sreedharan<br>Nair           | University of Florida                    | sabarinath@ufl.edu                    |
| Sale, Mark                               | Next Level Solutions                     | mark@nextlevelsolns.com               |
| Salem, Ahmed                             | University of Minnesota                  | sale0074@umn.edu                      |
| Salinger, David                          | Amgen, Inc.                              | salinger@amgen.com                    |
|                                          |                                          |                                       |
| Sallas, William                          | Novartis                                 | william.sallas@novartis.com           |

| Samtani, Mahesh          | Johnson and Johnson PRD                            | msamtani@its.jnj.com            |
|--------------------------|----------------------------------------------------|---------------------------------|
| Sanduja, Sachin          | Rudraya Corporation                                | sachin@rudraya.com              |
| Savant, Ishani           | Celgene Corporation                                | isavant@celgene.com             |
| Sawamoto, Taiji          | Astellas Pharma Global Development, Inc            | taiji.sawamoto@us.astellas.com  |
| Seng Yue, Corinne        | University of Montreal                             | corinne.seng.yue@umontreal.ca   |
| Shaik, Naveed            | Pfizer                                             | naveed.shaik@pfizer.com         |
| Sharma, Manish           | University of Chicago                              | manish.sharma@uchospitals.edu   |
| Shi, Jun                 | Metrum Research Group / Metrum Institute           | juns@metrumrg.com               |
| Shoji, Satoshi           | Pfizer                                             | satoshi.shoji@pfizer.com        |
| Simonsson, Ulrika        | Uppsala University                                 | ulrika.simonsson@farmbio.uu.se  |
| Singh, Pratap            | Pfizer                                             | pratap.singh.charan@gmail.com   |
| Singh, Rajendra          | University of Florida                              | rpsingh@ufl.edu                 |
| Song, Xiaoou             | Cephalon, Inc.                                     | ssong@cephalon.com              |
|                          |                                                    | alexander.staab@boehringer-     |
| Staab, Alexander         | Boehringer Ingelheim                               | ingelheim.com                   |
| Standing, Joseph         | Uppsala University                                 | joseph.standing@farmbio.uu.se   |
| Statkevich, Paul         | Schering Plough                                    | paul.statkevich@spcorp.com      |
| Stein, Andrew            | Novartis                                           | andrew.stein@novartis.com       |
| Stone, Julie             | Merck Research Labs                                | julie_stone@merck.com           |
| Struemper, Herbert       | GlaxoSmithKline                                    | herbert.struemper@yahoo.com     |
| Subramoney, Vishak       | Roche                                              | vishak.subramoney@roche.com     |
| Sullivan, Don            | TIBCO Software, Inc Spotfire Division              | dsulliva@tibco.com              |
| Sun, Xiaoyong            | Iowa State University                              | sunx1@iastate.edu               |
| Suryawanshi, Satyendra   | University of Tennessee                            | satyendra.suryawanshi@gmail.com |
| Sweeney, Kevin           | Pfizer                                             | kevin.sweeney@pfizer.com        |
| Tagami, Sanae            | CTC Laboratory Systems                             | sanae.fujita@ctc-g.co.jp        |
| Tagen, Michael           | St. Jude Children's Research Hospital              | michael.tagen@stjude.org        |
| Tan, Beesan              | The University of Iowa                             | beesan-tan@uiowa.edu            |
| Tannenbaum, Sandra       | ACoP Staff                                         | sandie@go-acop.org              |
| Tannenbaum, Stacey       | Novartis                                           | stacey.tannenbaum@novartis.com  |
| Taylor, Timothy          | Shenandoah University/Projections<br>Research Inc. | ttaylor@pri-home.net            |
| Tensfeldt, Thomas        | Pfizer                                             | thomas.g.tensfeldt@pfizer.com   |
| Teuscher, Nathan         | Alcon Labs                                         | nathan.teuscher@alconlabs.com   |
| Thanneer, Neelima        | Bristol-Myers Squibb                               | neelima.thanneer@bms.com        |
| Thatavarthi, Rajsekhar   | GVK Biosciences Pvt Ltd                            | rajsekhar@gvkbio.com            |
| Thomas, Greg             | Hoffmann-La Roche                                  | greg_j.thomas@roche.com         |
| Tian, Xianbin            | Archemix                                           | xtian@archemix.com              |
| Tibbitts, Jay            | Genentech, Inc.                                    | tibbitts@gene.com               |
| Tornoe, Christoffer      | FDA                                                | christoffer.tornoe@fda.hhs.gov  |
| Tortorici, Michael       | Pfizer                                             | michael.tortorici@pfizer.com    |
| Troy, Steven             | Shire Pharmaceuticals                              | stroy@shire.com                 |
| Tsai, Alice              | Vertex Pharmaceuticals                             | alice tsai@vrtx.com             |
| Tsai, Kuenhi             | Merck                                              | kuenhi tsai@merck.com           |
| Tsai, Max                | Takeda                                             | mtsai@tgrd.com                  |
| Uchizono, James          | University of the Pacific                          | juchizono@pacific.edu           |
| Udata, Chandrasekhar     | Wyeth                                              | udatac@wyeth.com                |
| Upton, Richard           | Projections Research Inc                           | richard.upton@adelaide.edu.au   |
| Urquhart, John           | UCSF Center for Drug Development<br>Science        | urquhart@ix.netcom.com          |
| Vaddady, Pavan Kumar     | University of Tennessee                            | pvaddady@utmem.edu              |
| · annuaj, i arun ituniai | Carrottely of Tollifebook                          | Fanal Committee                 |

| Vage, Chandra            | Pfizer                                  | Chandra.Vage@pfizer.com             |
|--------------------------|-----------------------------------------|-------------------------------------|
| Van, Linh                | Bristol Myers Squibb                    | linh.van@bms.com                    |
| VanWart, Scott           | Institute for Clinical Pharmacodynamics | Svanwart-icpd@ordwayresearch.org    |
| Varin, France            | Université de Montréal                  | france.varin@umontreal.ca           |
| Wada, Russ               | Quantitative Solutions                  | rwada@wequantify.com                |
| Wald, Jeffrey            | GlaxoSmithKine                          | jeffrey.a.wald@gsk.com              |
| Wang, Diane              | Pfizer                                  | diane.wang@pfizer.com               |
| Wang, Xiaoli             | Sigma                                   | zyzwxl@gmail.com                    |
| Wang, Xiaoning           | Bristol-Myers Squibb                    | xiaoningw@gmail.com                 |
| Wang, Yaning             | FDA                                     | yaning.wang@fda.hhs.gov             |
| Waterhouse, Tim          | Eli Lilly and Company                   | waterhouseth@lilly.com              |
| Wattanavijitkul, Thitima | The University of Iowa                  | thitima-wattanavijitkul@uiowa.edu   |
| Wei, Xiaohui             | sanofi-aventis                          | xiaohui.wei@sanofi-aventis.com      |
| Weiner, Daniel           | Pharsight                               | dlweiner@gmail.com                  |
|                          | Bayer Technology Services GmbH          | wolfgang.weiss@bayertechnology.com  |
| Weiss, Wolfgang          |                                         | <u> </u>                            |
| Willavize, Susan         | Cognigen Corporation                    | sawandjmp@cs.com                    |
| Williams, Jason          | The Children's Hospital of Philadelphia | williamsj2@email.chop.edu           |
| Willmann, Stefan         | Bayer Technology Services GmbH          | stefan.willmann@bayertechnology.com |
| Wu, Benjamin             | University of Florida                   | wube@ufl.edu                        |
| Wu, Di                   | Children's Hospital of Philadelphia     | wudi@email.chop.edu                 |
| Xiao, Alan               | AstraZeneca                             | alan.xiao@astrazeneca.com           |
| Xie, Rujia               | Pfizer                                  | rujia.xie@pfizer.com                |
| Xin, Yan                 | Genentech, Inc.                         | xin.yan@gene.com                    |
| Xu, Huiping              | Pfizer                                  | huiping.xu@pfizer.com               |
| Xu, Jian                 | Pfizer                                  | jian.xu@pfizer.com                  |
| Xu, Lu                   | Genentech, Inc.                         | lxu@gene.com                        |
| Xuan, Dawei              | Pfizer                                  | dawei.xuan@pfizer.com               |
| Yim, Dong-Seok           | The Catholic Univ of Korea              | yimds@catholic.ac.kr                |
| Yin, Yin                 | GlaxoSmithKine                          | yin.a.yin@gsk.com                   |
| Yu, Li                   | Millennium Pharmaceuticals              | li.yu@mpi.com                       |
| Yu, Zhiling              | Allergan                                | yu_steve@allergan.com               |
| Zandvliet, Anthe         | Schering-Plough                         | anthe.zandvliet@spcorp.com          |
| Zannella, Kristen        | The MathWorks                           | kristen.zannella@mathworks.com      |
| Zha, Jiuhong             | Vertex Pharmaceuticals                  | jiuhong_zha@vrtx.com                |
| Zhang, Liping            | Bristol-Myers Squibb                    | liping.zhang3@bms.com               |
| Zhang, Xiaoping          | F. Hoffmann-La Roche                    | amy.zhang@roche.com                 |
| Zhang, Yi                | Genentech, Inc.                         | zhang.yi@gene.com                   |
| Zhao, Liang              | MedImmune                               | liangzhao2000@hotmail.com           |
| Zhao, Ping               | OCP/FDA                                 | ping.zhao@fda.hhs.gov               |
| Zhao, Qinying            | Pfizer                                  | qinying.zhao@pfizer.com             |
| Zhou, Huafeng            | Merck                                   | huafeng zhou@merck.com              |
| Zhou, Susan              | Bristol-Myers Squibb                    | susan.zhou@bms.com                  |
| Zhu, Hao                 | FDA                                     | hao.zhu@fda.hhs.gov                 |
| Zhu, Rui                 | BMSR, University of Southern California | rzhu@usc.edu                        |
| Zhu, Yali                | Schering-Plough                         | yali.zhu@spcorp.com                 |
| Zuo, Peiying             | GlaxoSmithKline                         | peiying.q.zuo@gsk.com               |
| Zuo, i ciying            | Gianobilitatine                         | perymig.q.zuotu/gsk.com             |

### Thank you to our ACoP sponsors!





















# mangosolutions



















